АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Метод тяжелого шарика

Читайте также:
  1. A) Метод опроса
  2. I. Метод стандартизации
  3. I. Методы выбора инновационной политики
  4. I. ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЙ РАЗДЕЛ
  5. I. Основные характеристики и проблемы философской методологии.
  6. I.ЗАГАЛЬНІ МЕТОДИЧНІ ВКАЗІВКИ
  7. II. ВИРУСОЛОГИЧЕСКИЙ МЕТОД
  8. II. Вывод и анализ кинетических уравнений 0-, 1-, 2-ого порядков. Методы определения порядка реакции
  9. II. Методологічні засади, підходи, принципи, критерії формування позитивної мотивації на здоровий спосіб життя у дітей та молоді
  10. II. Методы прогнозирования и поиска идей
  11. II. Формальная логика как первая система методов философии.
  12. II. Цитогенетический метод

Метод базируется на аналогии с движением тяжелого материального шарика по наклонной поверхности. Скорость шарика при движении вниз будет возрастать, и он будет стремиться занять нижнее положение, т.е. точку минимума.

Xi+1 = Xi - a(Xi –Xi-1) – h grad F(Xi)

При a = 0 – метод превращается в обычный градиентный. При 0 < a < 1 можно получать различную эффективность метода, которая будет зависеть и от h. Вдали от оптимума поиск будет ускоряться, а вблизи возможны колебания около минимума.

a - определяет память алгоритма, т.е учитывает влияние предыдущей точки, поэтому увеличение этого параметра вблизи минимума может привести к более быстрому затуханию, если градиент функции мал. Предпочтителен, когда глобальный минимум ярко выражен и локальные мелки.

метод решения задачи минимизации дифференцируемой функции f(x)на евклидовом пространстве Е п. Метод основан на рассмотрении системы дифференциальных уравнений

к-рая описывает движение материальной точки по поверхности y=f (x)в поле тяжести, направленном в отрицательном направлении оси О у, при условии, что точка не может оторваться от поверхности и трение пропорционально скорости; f'(х) - градиент функции f(x)в точке х, - коэффициент трения. Этим объясняется название метода. Учитывая, что в окрестности стационарной точки величина |f' (х) | - мала, систему (1) часто заменяют системой

При нек-рых предположениях относительно функции f(x)и начальных условий

можно доказать, что соответствующее решение x(t)системы (1) или (2) при сходится к какой-либо стационарной точке x*функции f(x);eсли f(x) - выпуклая функция, то x* -точка минимума f(х) на Е n. Таким образом, Т. ш. м. является частным случаем установления метода (см. [1]). Для численного решения систем (1), (2) могут быть применены, напр.; разностные методы. В зависимости от выбора разностного метода получаются дискретные аналоги Т. ш. м., охватывающие как частный случай овражных функций методы минимизации, сопряженных градиентов метод и т. п. Выбор величины шага разностного метода и коэффициента асущественно влияют на скорость сходимости Т. ш. м. Вместо (1), (2) возможно использование других систем 1-го или 2-го порядка (см. [1]). В задачах минимизации функции f(x) при ограничениях


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)