АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Элементы теории игр. Понятие игры (игроки, стратегии, выигрыши)

Читайте также:
  1. I. Общее понятие модернизма
  2. А) выигрыш 1-го игрока при использовании им i-й стратегии, а 2-м – j-й стратегии.
  3. Административно-правовой статус гражданина РФ, его элементы
  4. Административное правонарушение: понятие и признаки, правовая основа№9
  5. Административные взыскания: понятие, перечень и наложения
  6. Актуальность Теории Гласиер
  7. Акты официального толкования норм права: понятие, признаки, классификация.
  8. Акты применения норм права: понятие, классификация, эффектив-ность действия. Соотношение нормативно-правовых и правоприменительных актов.
  9. Амнистия: понятие и признаки. Помилование: понятие, правовые последствия, отличие от амнистии.
  10. Анатомия, физиология, первичные и вторичные элементы
  11. Аппарат государства. Понятие органа аппарата государства.
  12. Б) если в двигательном фонде отсутствует оперные элементы

Тео́рия игр — математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за реализацию своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу — в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, их ресурсах и их возможных поступках.[1]

Теория игр — это раздел прикладной математики, точнее — исследования операций. Чаще всего методы теории игр находят применение вэкономике, чуть реже в других общественных науках — социологии, политологии, психологии, этике и других. Начиная с 1970-х годов её взяли на вооружение биологи для исследования поведения животных и теории эволюции. Очень важное значение она имеет для искусственного интеллектаи кибернетики, особенно с проявлением интереса к интеллектуальным агентам.

Игры представляют собой строго определённые математические объекты. Игра образуется игроками, набором стратегий для каждого игрока и указания выигрышей, или платежей, игроков для каждой комбинации стратегий. Большинство кооперативных игр описываются характеристической функцией, в то время как для остальных видов чаще используют нормальную или экстенсивную форму. Характеризующие признаки игры как математической модели ситуации:

1. наличие нескольких участников;

2. неопределенность поведения участников, связанная с наличием у каждого из них нескольких вариантов действий;

3. различие (несовпадение) интересов участников;

4. взаимосвязанность поведения участников, поскольку результат, получаемый каждым из них, зависит от поведения всех участников;

5. наличие правил поведения, известных всем участникам.

Игрок в теории игр — рациональный индивид, имеющий заинтересованность в исходе игры и возможности воздействовать на него.

Рациональность игрока в данном определении означает, что он обладает некоторой согласованной системой предпочтений на исходах игры, неизменной на всём её протяжении и выбирает свои действия с целью достижения наилучшего, с точки зрения этой системы, исхода, используя всю имеющуюся в его распоряжении информацию. При этом под согласованностью системы предпочтений понимается, что она представима, по крайней мере, частичным порядком, т.е. для пары исходов игры индивид может указать, является ли один лучше другого или они для него безразличны.

Заинтересованность игрока в исходе игры означает, что не все исходы одинаково предпочтительны для игрока, т.е. он имеет стимулы к выбору некоторого их подмножества.

Наличие возможностей воздействия на исход игры состоит в том, что игрок может своими действиями, по крайней мере, частично влиять на то, какой исход будет реализован. Как правило, возможности игроков моделируются в задаче теории игр при помощи множеств их стратегий. В простейшей статической постановке некооперативной игры, её исход (ситуация) представляет собой набор стратегий, выбранных всеми участвующими игроками.

В теории игр страте́гия игрока в игре или деловой ситуации — это полный план действий при всевозможных ситуациях, способных возникнуть. Стратегия определяет действие игрока в любой момент игры и для каждого возможного течения игры, способного привести к каждой ситуации.

Набор стратегий — стратегии для каждого из игроков, которые полностью описывают все действия в игре. Набор стратегий обязан включать одну и только одну стратегию для каждого игрока.

Понятие стратегии иногда (ошибочно) путают с понятием хода. Ход является действием одного из игроков в какой-то момент игры. Стратегию можно сравнить с полным компьютернымалгоритмом для участия в игре, который предусматривает возможность хода из любого возможного положения во время игры. К примеру, число ходов в «крестиках-ноликах» 4 или 5, в зависимости от того, кто начал; число всех стратегий 384 или 945 соответственно.

Чистая стратегия даёт полную определённость каким образом игрок продолжит игру. В частности, она определяет результат для каждого возможного выбора, который игроку может придётся сделать. Пространством стратегий называют множество всех чистых стратегий доступных данному игроку.

Смешанная стратегия — является указанием вероятности каждой чистой стратегии. Это означает, что игрок выбирает одну из чистых стратегий, в соответствии с вероятностями заданными смешанной стратегией. Выбор осуществляется перед началом каждой игры и не меняется до её конца. Каждая чистая стратегия является частным случаем смешанной, когда вероятность данной чистой стратегии 1 и у всех других нулевая вероятность.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)