|
||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Игра двух участников с нулевой суммой. Решение игры двух участников с нулевой суммой в смешанных стратегияхАнтагонистическая игра (игра с нулевой суммой, англ. zero-sum) — термин теории игр. Антагонистической игрой называется некооперативная игра, в которой участвуют два игрока, выигрыши которых противоположны. Формально антагонистическая игра может быть представлена тройкой < X, Y, F >, где X и Y — множества стратегий первого и второго игроков, соответственно; F — функция выигрыша первого игрока, ставящая в соответствие каждой паре стратегий (ситуации) (x, y), действительное число, соответствующее полезности первого игрока при реализации данной ситуации. Так как интересы игроков противоположны, функция F одновременно представляет и проигрыш второго игрока. Исторически антагонистические игры являются первым классом математических моделей теории игр, при помощи которых описывались азартные игры. Считается, что благодаря этому предмету исследования теория игр и получила свое название. В настоящее время антагонистические игры рассматриваются как часть более широкого класса некооперативных игр.
Простейшим примером антагонистической игры является игра «Орлянка». Первый игрок прячет монету орлом или решкой вверх, а второй пытается угадать, как она спрятана. Если он не угадывает — он платит первому одну денежную единицу, если угадывает — первый платит ему одну денежную единицу. В данной игре каждый участник имеет две стратегии: «орел» и «решка». Множество ситуаций в игре состоит из четырех элементов. В строках таблицы указаны стратегии первого игрока х, в столбцах — стратегии второго игрока y. Для каждой из ситуаций указаны выигрыши первого и второго игроков. В аналитическом виде функция выигрыша первого игрока имеет следующую форму: где x ∈ X и y ∈ Y — стратегии первого и второго игроков, соответственно. Так как выигрыш первого игрока равен проигрышу второго, то . Если результат полностью определяется игроком, совершившим последний ход (если правила хода идентичны для игроков), стратегия может быть найдена с помощью функции Гранди. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |