|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Графическое решение системы линейных неравенствДля графического решения данной задачи необходимо уметь решать графически системы линейных неравенств с двумя переменными. Сначала дадим геометрическое истолкование линейного неравенства. · Решением линейного неравенства с двумя переменными называется множество пар значений переменных , которые удовлетворяют неравенству. Геометрически решением линейного неравенства является полуплоскость, границей которой является прямая . Порядок действий: 1) записать уравнение и построить на плоскости граничную прямую; 2) выбрать искомую полуплоскость, координаты точек в которой удовлетворяют заданному неравенству. Для этого подставляют в неравенство координаты точки с известными координатами , не лежащей на граничной прямой. Если получится верное числовое неравенство, то искомая полуплоскость та, которая содержит точку (в противном случае берется другая полуплоскость). Плоскость выделяется штриховкой.
0
Отметим, что неравенство определяет правую координатную полуплоскость (от оси ), а неравенство - верхнюю координатную полуплоскость (от оси ).
Пример 2. Решить графически неравенство . Запишем уравнение граничной прямой и построим ее по двум точкам, например, и . Прямая делит плоскость на две полуплоскости.
0 2
-4
Координаты точки удовлетворяют неравенству ( – верно), значит, и координаты всех точек полуплоскости, содержащей точку , удовлетворяют неравенству. Решением неравенства будут координаты точек полуплоскости, расположенной справа от граничной прямой , включая точки на границе. Искомая полуплоскость на рисунке выделена. · Решением системы линейных неравенств называется множество пар значений переменных , которые удовлетворяют одновременно всем неравенствам. Геометрически решением системы линейных неравенств является область на плоскости, координаты точек которых лежат в пересечении полуплоскостей. Решение системы неравенств называется допустимым, если его координаты неотрицательны , . Множество допустимых решений системы неравенств образует область, которая расположенав первой четверти координатной плоскости. Пример 3. Построить область решений системы неравенств Решениями неравенств является: 1) - полуплоскость, расположенная левее и ниже относительно прямой () ; 2) – полуплоскость, расположенная в правой-нижней полуплоскости относительно прямой () ; 3) - полуплоскость, расположенная правее прямой () ; 4) - полуплоскость выше оси абсцисс, то есть прямой () .
3 B 0
Область допустимых решений данной системы линейных неравенств – это множество точек, расположенных внутри и на границе четырехугольника , являющегося пересечением четырех полуплоскостей. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.) |