|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ КОНВЕКТИВНОГО МАССО- И ТЕПЛООБМЕНАДифференциальное уравнение конвективного массообмена*, описывающее массоперенос в движущейся среде, выводится аналогично дифференциальному уравнению энергии. В отсутствие источников массы уравнение конвективного массе обмена при D = const имеет вид
или
Где - субстанциальная производная; оператор Лапласа; vx, vy, vz — компоненты скорости потока, м/с. Первое слагаемое левой части уравнения (14.11) характеризует изменение концентрации распределяемого вещества в произвольной неподвижной точке с координатами х, у, z во времени т; слагаемые с компонентами'скорости — изменение концентрации в указанной точке за счет движения потока; слагаемые правой части уравнения — изменение концентрации, вызванное молекулярной диффузией. Уравнение (14.11) записано в общей форме; в частных случаях (одномерное движение, отсутствие молекулярной диффузии и т. д.) оно принимает более простой вид. При vx = vy = vz = Q уравнение (14.11) переходит в дифференциальное уравнение молекулярной диффузии (14.3). Интегрирование уравнения (14.11) при соответствующих условиях однозначности дает значение концентрации как функции координат и времени: С = С(х, у, z, т.). Однако это решение может быть получено в аналитическом виде только для наиболее простых случаев. В общем случае неоднородного поля скоростей (например, в случае движения потока вблизи поверхности раздела фаз) уравнение (14.11) нужно интегрировать совместно с уравнениями движения Навье—Стокса, описывающими скоростное поле, и уравнением неразрывности, что представляет сложную задачу. Поэтому основным путем исследования конвективного массообмена (как и конвективного теплообмена) является экспериментальный путь с привлечением теории подобия. Цель такого исследования состоит обычно в установлении опытных критериальных зависимостей для расчета коэффициента массообмена. При маосоотдаче плотность потока массы у поверхности раздела фаз можно выразить через уравнение массообмена (14.5) и чере.з уравнение молекулярной диффузии (14.1):
Преобразуя уравнение (14.13) методами теории подобия, получим массообменное число Нуссельта:
где I — характерный размер, м. Анализируя уравнение конвективного массообмена (14.11), получим критерии (числа) Рейнольдса и Прандтля для массообмена:
где v — кинематическая вязкость, м2/с. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |