|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Элементы теории случайных процессов и теории массового обслуживанияВ главе рассматриваются: - определение случайного процесса и его характеристики, понятие марковского случайного процесса; - основные понятия теории массового обслуживания; - потоки событий; - уравнение Колмогорова; - СМО с отказами; - метод Монте-Карло. Типовые задачи
Пример 7.1 Случайный процесс определяется формулой X(t) = Xcoswt, где X – случайная величина. Найти основные характеристики этого процесса, если М(Х) = а, D(X) = а2. Решение На основании свойств математического ожидания и дисперсии имеем: Корреляционную функцию найдем по формуле (7.1): Нормированную корреляционную функцию найдем по формуле (7.2):
Пример 7.2 Построить граф состояний следующего случайного процесса: устройство S состоит из двух узлов, каждый из которых в случайный момент времени может выйти из строя, после чего мгновенно начинается ремонт узла, продолжающийся заранее неизвестное случайное время. Решение Возможные состояния системы: S0 – оба узла исправны; S1 – первый узел ремонтируется, второй исправен; S2 – второй узел ремонтируется, первый исправен; S3 - оба узла ремонтируются. Граф системы приведен на рис. 7.4. Стрелка, направленная, например, из S0 в S1, означает переход системы в момент отказа первого узла, из S1 в S0 – переход в момент окончания ремонта этого узла. На графе отсутствуют стрелки из S0 в S3 и из S1 в S2. Это объясняется тем, что выходы узлов из строя предполагаются независимыми друг от друга и, например, вероятностью одновременного выхода из строя двух узлов (переход из S0 в S3) или одновременного окончания ремонтов двух узлов (переход из S3 в S0) можно пренебречь.
Пример 7.3 На автоматическую телефонную станцию поступает простейший поток вызовов с интенсивностью альфа = 1,2 вызовов в минуту. Найти вероятность того, что за две минуты: а) не придет ни одного вызова; б) придет ровно один вызов; в) придет хотя бы один вызов. Решение а) Случайная величина X – число вызовов за две минуты – распределена по закону Пуассона с параметром λτ = 1,2*2 = 2,4. Вероятность того, что вызовов не будет (m = 0), по формуле (7.5): . б) Вероятность одного вызова (m = 1): . в) Вероятность хотя бы одного вызова: .
Пример 7.4 Найти предельные вероятности для системы S из примера 7.2, граф состояний которой приведен на рис. 7.4, при λ01 = 1, λ02 = 2, λ10 = 2, λ13 = 2, λ20 = 3, λ23 = 1, λ31 = 3, λ32 = 2. Решение Система алгебраических уравнений, описывающих стационарный режим для данной системы, имеет вид (7.14) или (7.15) (Здесь вместо одного «лишнего»уравнения системы (7.14) записали нормировочное условие(7.12).) Решив систему (7.15), получим p0 = 0,40, p1 = 0,20, p2 = 0,27, p3 = 0,13, т.е. в предельном стационарном режиме системе S в среднем 40% времени будет находиться в состоянии S 0 (оба узла исправны), 20% - в состоянии S 1 (первый узел ремонтируется, второй работает), 27% - в состоянии S 2 (второй узел ремонтируется, первый работает) и 13% времени – в состоянии S 3 (оба узла ремонтируются).
Пример 7.5 Найти средний чистый доход от эксплуатации в стационарном режиме системы S в условиях примеров 7.2 и 7.4, если известно, что в единицу времени исправная работа первого и второго узлов приносит доход соответственно в 10 и 6 ден. ед., а их ремонт требует затрат соответственно в 4 и 2 ден. ед. Оценить экономическую эффективность имеющейся возможности уменьшения вдвое среднего времени ремонта каждого из двух узлов, если при этом придется вдвое увеличить затраты на ремонт каждого узла (в единицу времени). Решение Из примера 7.4 следует, что в среднем первый узел исправно работает долю времени, равную p0+ р2 = 0,40 + 0,27 = 0,67, а второй узел – p0 + р1 = 0,40 + 0,20 = 0,60. в то же время первый узел находится в ремонте в среднем долю времени, равную р1 + р3 = 0,20 + 0,13 = 0,33, а второй узел – р2+р3= =0,27+0,13=0,40. Поэтому средний чистый доход в единицу времени от эксплуатации системы, т.е. разность между доходами и затратами, равен D = 0,67*10+0,60*6-0,33*4-0,40*2 = 8,18 ден. ед. Уменьшение вдвое среднего времени ремонта каждого из узлов в соответствии с (7.10) будет означать увеличение вдвое интенсивностей потока «окончаний ремонтов» каждого узла, т.е. теперь λ10 = 4, λ 20 = 6, λ31 = 6, λ32 = 4 и система линейных алгебраических уравнений (7.14), описывающая стационарный режим системы S, вместе с нормировочным условием (7.12) примет вид: Решив систему, получим р0 = 0,60, р1 = 0,15, р2 = 0,20, р3 = 0,05. Учитывая, что р0 + р2 = 0,60 + 0,20 = 0,80, р0 + р1 = 0,60 + 0,15 = 0,75, р1 + р3 = 0,15 + 0,05 = 0,20, р2 + р3 = 0,20 + 0,05 = 0,25, а затраты на ремонт первого и второго узлов составляют теперь соответственно 8 и 4 ден. ед., вычислим средний чистый доход в единицу времени: D1 = 0,80*10+0,75*6-0,20*8-0,25*4 = 9,9 ден. ед. Так как D1 больше D (примерно на 20%), то экономическая целесообразность ускорения ремонтов узлов очевидна.
Пример 7.6 Процесс гибели и размножения представлен графом (рис.7.8). Найти предельные вероятности состояний.
Решение По формуле (7.20) найдем , по (7.21) , , т.е. в установившемся стационарном режиме в среднем 70,6% времени система будет находится в состоянии S0, 17,6% - в состоянии S1 и 11,8% - в состоянии S2.
Пример 7.7 Известно, что заявки на телефонные переговоры в телевизионном ателье поступают с интенсивностью Я, равной 90 заявок в час, а средняя продолжительность разговора по телефону to6 – 2 мин. Определить показатели эффективности работы СМО (телефонной связи) при наличии одного телефонного номера. Решения Имеем λ = 90 (1/ч), tоб = 2 мин. Интенсивность потока обслуживаний μ = 1/ tоб = 1/2 = 0,5 (1/мин) = 30 (1/ч). По (7.24) относительная пропускная способность СМО Q = 30/(90+30) = 0,25, т.е. в среднем только 25% поступающих заявок осуществят переговоры по телефону. Соответственно вероятность отказа в обслуживании составит PОТК =0,75 (см. (7.25)). Абсолютная пропускная способность СМО по (7.26) A=90*0,25=22,5, т.е. в среднем в час будут обслужены 22,5 заявки на переговоры. Очевидно, что при наличии только одного телефонного номера СМО будет плохо справляться с потоком заявок.
Пример 7.8 В условиях примера 7.7 определить оптимальное число телефонных номеров в телевизионном ателье, если условием оптимальности считать удовлетворение из каждых 100 заявок на переговоры в среднем не менее 90 заявок. Решение Интенсивность нагрузки канала по формуле (7.28) р =90/30=3, т.е. за время среднего (по продолжительности) телефонного разговора tоб = 2 мин поступает в среднем 3 заявки на переговоры. Будем постепенно увеличивать число каналов (телефонных номеров) п = 2, 3, 4,... и определим по формулам (7.29), (7.32), (7.33) для получаемой n-канальной СМО характеристики обслуживания. Например, при п = 2 po =(1 + 3 + 32/2!)-1 = 0,118 ≈ 0,12; Q = 1-(32/2!)*0,118 ≈ 0,471; А = 90*0,471 = 42,4. Значение характеристик СМО сведем в табл. 7.1. Таблица 7.1
По условию оптимальности Q ≥ 0,9, следовательно, в телевизионном ателье необходимо установить 5 телефонных номеров (в этом случае Q = 0,90 – см. табл. 7.1). При этом в час будут обслуживаться в среднем 80 заявок (А = 80,1), а среднее число занятых телефонных номеров (каналов) по формуле (7.34) = 80, 1/30 = 2,67.
Пример 7.9 В вычислительный центр коллективного пользования с тремя ЭВМ поступают заказы от предприятий на вычислительные работы. Если работают все три ЭВМ, то вновь поступающий заказ не принимается, и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 ч. Интенсивность потока заявок 0,25 1/ч. Найти предельные вероятности состояний и показатели эффективности работы вычислительного центра. Решение По условию п=3, λ =0,25 (1/ч), to6 =3 (ч). Интенсивность потока обслуживаний μ =1/to6 =1/3=0,33. Интенсивность нагрузки ЭВМ по формуле (7.28) р =0,25/0,33=0,75. Найдем предельные вероятности состояний: по формуле (7.29): p0=(1+0,75+0,752/2!+0,753/3!)-1=0,476; по формуле (7.30): p1 = 0,75*0,476 = 0,357; p2 = (0,752/2!)*0,476 = 0,134; p3 = (0,753/3!)*0,476 = 0,033, т.е. в стационарном режиме работы вычислительного центра в среднем 47,6% времени нет ни одной заявки, 35,7% – имеется одна заявка (занята одна ЭВМ), 13,4% – две заявки (две ЭВМ), 3,3% времени – три заявки (заняты три ЭВМ). Вероятность отказа (когда заняты все три ЭВМ), таким образом, Р0ТК = р3 = 0,033. Согласно формуле (7.32) относительная пропускная способность центра Q = 1 – 0,033 = 0,967, т.е. в среднем из каждых 100 заявок вычислительный центр обслуживает 96,7 заявок. По формуле (7.33) абсолютная пропускная способность центра А = 0,250,967 = 0,242, т.е. в один час в среднем обслуживается 0,242 заявки. Согласно формуле (7.34) среднее число занятых ЭВМ к = = 0,242/0,33 = 0,725, т.е. каждая из трех ЭВМ будет занята обслуживанием заявок в среднем лишь на 72,5/3 = 24,2%. При оценке эффективности работы вычислительного центра необходимо сопоставить доходы от выполнения заявок с потерями от простоя дорогостоящих ЭВМ (с одной стороны, здесь высокая пропускная способность СМО, а с другой – значительный простой каналов обслуживания) и выбрать компромиссное решение.
Задания
7.1. Случайный процесс определяется формулой X(t)= Хе(-t) (t > 0), где X – случайная величина, распределенная по нормальному закону с параметрами а и а2. Найти математическое ожидание, дисперсию, корреляционную и нормированную корреляционную функции случайного процесса. 7.2. Построить граф состояний следующего случайного процесса: система состоит из двух автоматов по продаже газированной воды, каждый из которых в случайный момент времени может быть либо занятым, либо свободным. 7.3. Построить граф состояний системы S, представляющей собой электрическую лампочку, которая в случайный момент времени может быть либо включена, либо выключена, либо выведена из строя. 7.4. Среднее число заказов на такси, поступающих на диспетчерский пункт в одну минуту, равно 3. Найти вероятность того, что за две минуты поступит: а) 4 вызова; б) хотя бы один; в) ни одного вызова. (Поток заявок простейший.) 7.5. Найти предельные вероятности для систем S, граф которых изображен на рис. 7.11 и 7.12. 7.6. Рассматривается круглосуточная работа пункта проведения профилактического осмотра автомашин с одним каналом (одной группой проведения осмотра). На осмотр и выявление дефектов каждой машины затрачивается в среднем 0,5 ч. На осмотр поступает в среднем 36 машин в сутки. Потоки заявок и обслуживаний – простейшие. Если машина, прибывшая в пункт осмотра, не застает ни одного канала свободным, она покидает пункт осмотра необслуженной. Определить предельные вероятности состояний и характеристики обслуживания профилактического пункта осмотра. 7.7. Решить задачу 7.15 для случая п = 4 канала (групп проведения осмотра). Найти минимальное число каналов, при котором относительная пропускная способность пункта осмотра будет не менее 0,9. 7.8. Одноканальная СМО с отказами представляет собой одну телефонную линию, на вход которой поступает простейший поток вызовов с интенсивностью 0,4 вызовов/мин. Средняя продолжительность разговора 3 мин.; время разговора имеет показательное распределение. Найти предельные вероятности состояний и характеристики обслуживания СМО. Сравнить пропускную способность СМО с номинальной, которая была бы, если разговор длился в точности 3 мин., а заявки шли одна за другой регулярно, без перерывов. 7.9. Имеется двухканальная простейшая СМО с отказами. На ее вход поступает поток заявок с интенсивностью 4 заявки/ч. Среднее время обслуживания одной заявки 0,8 ч. Каждая обслуженная заявка приносит доход 4 ден. ед. Содержание каждого канала обходится 2 ден. ед./ч. Выяснить, выгодно или невыгодно в экономическом отношении увеличить число каналов до трех. Задания по вариантам
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.01 сек.) |