|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Модели с бинарными фиктивными переменнымиТермин “фиктивные переменные” используется как противоположность “значащим” переменным, показывающим уровень количественного показателя, принимающего значения из непрерывного интервала. Как правило, фиктивная переменная — это индикаторная переменная, отражающая качественную характеристику. Чаще всего применяются бинарные фиктивные переменные, принимающие два значения, 0 и 1, в зависимости от определенного условия. Например, в результате опроса группы людей 0 может означать, что опрашиваемый - мужчина, а 1 - женщина. К фиктивным переменным иногда относят регрессор, состоящий из одних единиц (т.е. константу, свободный член), а также временной тренд. Фиктивные переменные, будучи экзогенными, не создают каких-либо трудностей при применении ОМНК. Фиктивные переменные являются эффективным инструментом построения регрессионных моделей и проверки гипотез. Иногда возникает необходимость включения в модель фактор, имеющий два или более качественных уровней. Это могут быть разного рода атрибутивные признаки, такие, например, как профессия, пол, образование, климатические условия, принадлежность к определенному региону. Для того чтобы ввести такие переменные в регрессионную модель, им должны быть присвоены те или иные цифровые метки, т. е. качественные переменные необходимо преобразовать в количественные. Такого вида сконструированные переменные в эконометрике принято называть фиктивными переменными. Моделью бинарного выбора называется модель регрессии, в которой результативная переменная может принимать только узкий круг заранее заданных значений В качестве примеров бинарных результативных переменных можно привести: Приведенные в качестве примеров бинарные переменные являются дискретными величинами. Бинарная непрерывная величина задаётся следующим образом: Если стоит задача построения модели регрессии, включающей результативную бинарную переменную, то прогнозные значения yiпрогноз, полученные с помощью данной модели, будут выходить за пределы интервала [ 0;+1 ] и не будут поддаваться интерпретации. В этом случае задача построения модели регрессии формулируется не как предсказание конкретных значений бинарной переменной, а как предсказание непрерывной переменной, значения которой заключаются в интервале [ 0;+1 ]. Решением данной задачи будет являться кривая, удовлетворяющая следующим трём свойствам: 1) 1) F(–∞)=0; 2) F(+∞)=1; 3) F(x1)>F(x2) при условии, что x1> x2. Данным трём свойствам удовлетворяет функция распределения вероятности. Модель парной регрессии с результативной бинарной переменной с помощью функции распределения вероятности можно представить в следующем виде: prob(yi=1)=F(β0+β1xi), где prob(yi=1) – это вероятность того, что результативная переменная yi примет значение, равное единице. В этом случае прогнозные значения yiпрогноз, полученные с помощью данной модели, будут лежать в пределах интервала [ 0;+1 ]. Модель бинарного выбора может быть представлена с помощью скрытой или латентной переменной следующим образом: Векторная форма модели бинарного выбора с латентной переменной: В данном случае результативная бинарная переменная yi принимает значения в зависимости от латентной переменной yi*: Модель бинарного выбора называется пробит-моделью или пробит-регрессией (probit regression), если она удовлетворяет двум условиям: 1) остатки модели бинарного выбора εi являются случайными нормально распределёнными величинами; 2) функция распределения вероятностей является нормальной вероятностной функцией. Пробит-регрессия может быть представлена с помощью выражения: NP(yi)=NP(β0+β1x1i+…+βkxki), где NP – это нормальная вероятность (normal probability). Модель бинарного выбора называется логит-моделью или логит-регрессией (logit regression), если случайные остатки εi подчиняются логистическому закону распределения. Логит-регрессия может быть представлена с помощью выражения: Данная модель логит-регрессии характеризуется тем, что при любых значениях факторных переменных и коэффициентов регрессии, значения результативной переменной yi будут всегда лежать в интервале [0;+1]. Обобщённый вид модели логит-регрессии: Достоинством данной модели является то, что результативная переменная yi может произвольно меняться внутри заданного числового интервала (не только от нуля до плюс единицы). Логит-регрессия относится к классу функций, которые можно привести к линейному виду. Это осуществляется с помощью преобразования, носящего название логистического или логит преобразования, которое можно проиллюстрировать на примере преобразования обычной вероятности р: Качество построенной логит-регрессии или пробит-регрессии характеризуется с помощью псевдо коэффициента детерминации, который рассчитывается по формуле: Если значение данного коэффициента близко к единице, то модель регрессии считается адекватной реальным данным.
28) Теорема Гаусса – Маркова К.73 Функция регрессии как оптимальный прогноз Пусть матрица X уравнений наблюдений имеет размер n*(k+1), где n>k+1, n – число уравнений наблюдений, k+1 – количество неизвестных коэффициентов; функции регрессии моделии обладает линейно-независимыми столбцами, а случайные возмущения удовлетворяют четырем условиям: Cov(ui,uj)=0, i≠j Cov(xmi,uj)=0 при всех значениях m,i,j Тогда: а) наилучшая линейная процедура (13), приводящая к несмещенной и эффективной оценке (11), имеет вид: (22) б) линейная несмещенная эффективная оценка (22) обладает св-вом наименьших квадратов: (23) в) ковариационная матрица оценки (22) вычисляется по правилу: (24) г) несмещенная оценка параметра σ2 модели нах-ся по формуле: (25) Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |