АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Способы корректировки гетероскедастичности. Метод взвешенных наименьших квадратов Делить большие остатки

Читайте также:
  1. ABC-аналіз як метод оптимізації абсолютної величини затрат підприємства
  2. D большие, средние, малые
  3. Exercises for Lesson 3. Requests and offers / Просьбы и предложения. Способы выражения, лексика, примеры.
  4. Exercises for Lesson 3. Requests and offers / Просьбы и предложения. Способы выражения, лексика, примеры.
  5. Exercises for Lesson 3. Requests and offers / Просьбы и предложения. Способы выражения, лексика, примеры.
  6. I. ПРЕДМЕТ И МЕТОД
  7. I.ЗАГАЛЬНІ МЕТОДИЧНІ ВКАЗІВКИ
  8. II. Документация как элемент метода бухгалтерского учета
  9. II. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ
  10. II. Методична робота.
  11. II. МЕТОДЫ, ПОДХОДЫ И ПРОЦЕДУРЫ ДИАГНОСТИКИ И ЛЕЧЕНИЯ
  12. II. МЕТОДЫ, ПОДХОДЫ И ПРОЦЕДУРЫ ДИАГНОСТИКИ И ЛЕЧЕНИЯ

Гетероскедастичность приводит к неэффективности оценок несмотря на их несмещенность. Это может привести к необоснованным выводам по качеству модели. Поэтому при установлении гетеро-сти возникает необходимость преобразования модели с целью устранения данного недостатка. Вид преобразования зависит от того, известны или нет дисперсии отклонений случайных возмущений. Если такие дисперсии известны, применяется метод взвешенных наименьших квадратов (ВНК).

Опишем метод ВНК на примере парной регрессии:

 

 

Разделим обе части на известное СКО

 

Перейдем к новым переменным:

При этом для vi выполняется условие гомоскедастичности

 

 

Так как по первой предпосылки МНК ,то

 

 

(только помоему вместо уi^2 должно быть дисперсия на которую делили? Не уверена)

То есть выполняются все предпосылки МНК, то есть все полученные оценки будут наилучшими линейными несмещенными оценками.

Для определения дисперсии остатков на которую делим все уравнение изначально:. Суть методов коррекции гетероскедастичности состоит в определении оценки ковариационной матрицы случайных ошибок модели регрессии:

Для определения оценок используется метод Бреуше-Пайана, который реализуется в несколько этапов:

1) после получения оценок неизвестных коэффициентов модели регрессии рассчитывают остатки ei и показатель суммы квадратов остатков 2) рассчитывают оценку дисперсии остатков модели регрессии по формуле: 3) строят взвешенную модель регрессия, где весами являются оценка дисперсии остатков модели регрессии 4) если при проверке гипотез взвешенная модель регрессии является незначимой, то можно сделать вывод, что оценки матрицы ковариаций Ω являются неточными. Если вычислены оценки дисперсий остатков модели регрессии, то в этом случае можно использовать доступный обобщённый или взвешенный методы наименьших квадратов для вычисления оценок коэффициентов модели регрессии, которые отличаются только оценкой

(моно не писать второй способ) Если гетероскедастичность остатков не поддаётся корректировке, то можно рассчитать оценки неизвестных коэффициентов модели регрессии с помощью классического метода наименьших квадратов, но затем подвергнуть корректировке ковариационную матрицу оценок коэффициентов т. к. условие гетероскедастичности приводит к увеличению данной матрицы.

Ковариационная матрица оценок коэффициентов может быть скорректирована методом Уайта:

где N – количество наблюдений; X – матрица независимых переменных; – квадрат остатков модели регрессии; – транспонированная i-тая строка матрицы данных Х.

Корректировка ковариационной матрицы оценок коэффициентов методом Уайта приводит к изменению t-статистики и доверительных интервалов для коэффициентов регрессии.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)