|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Определение аналитических технологийВведение В современном мире прогресс производительности программиста практически достигается только в тех случаях, когда часть интеллектуальной нагрузки берут на себя компьютеры. Одним из способов достигнуть максимального прогресса в этой области, является "искусственный интеллект", когда компьютер берет на себя не только однотипные, многократно повторяющиеся операции, но и сам сможет обучаться. Кроме того, создание полноценного "искусственного интеллекта" открывает перед человечеством новые горизонты развития. Термин интеллект(intelligence) происходит от латинского intellectus — что означает ум, рассудок, разум; мыслительные способности человека. Соответственно искусственный интеллект(artificialintelligence) — ИИ (AI) обычно толкуется как свойство автоматических систем брать на себя отдельные функции интеллекта человека, например, выбирать и принимать оптимальные решения на основе ранее полученного опыта и рационального анализа внешних воздействий. Нейронные сети – это раздел искусственного интеллекта, в котором для обработки сигналов используются явления, аналогичные происходящим в нейронах живых существ. Важнейшая особенность сети, свидетельствующая о ее широких возможностях и огромном потенциале, состоит в параллельной обработке информации всеми звеньями. При громадном количестве межнейронных связей это позволяет значительно ускорить процесс обработки информации. Кроме того, при большом числе межнейронных связей сеть приобретает устойчивость к ошибкам, возникающим на некоторых линиях [4]. Другое не менее важное свойство – способность к обучению и обобщению накопленных знаний. Нейронная сеть обладает чертами искусственного интеллекта. Натренированная на ограниченном множестве данных сеть способна обобщать полученную информацию и показывать хорошие результаты на данных, не использовавшихся в процессе обучения. Различные способы объединения нейронов между собой и организации их взаимодействия привели к созданию сетей разных типов. Каждый тип сети, в свою очередь, связан с соответствующим методом подбора весов межнейронных связей. Среди множества существующих видов сетей в качестве важнейших можно выделить многослойный персептрон, радиальные сети, сети с самоорганизацией на основе конкуренции нейронов, а также рекуррентные сети, в которых имеются сигналы обратной связи. В данном пособии уделяется внимание важнейшим перечисленным выше типам искусственных нейронных сетей, методам их обучения и практического использования при решении конкретных задач обработки информации.
Аналитические технологии Определение аналитических технологий. Аналитические технологии - это методики, которые на основе каких-либо моделей, алгоритмов, математических теорем позволяют по известным данным оценить значения неизвестных характеристик и параметров. Простейший пример аналитической технологии - теорема Пифагора, которая позволяет по длинам сторон прямоугольника определить длину его диагонали. Эта технология основана на известной формуле с2=а2+b2. Другим примером аналитической технологии являются способы, с помощью которых обрабатывает информацию человеческий мозг. Даже мозг ребенка может решать задачи, неподвластные современным компьютерам, такие как распознавание знакомых лиц в толпе или эффективное управление несколькими десятками мышц при игре в футбол. Уникальность мозга состоит в том, что он способен обучаться решению новых задач - игре в шахматы, вождению автомобиля и т.д. Тем не менее, мозг плохо приспособлен к обработке больших объемов числовой информации. Для решения этих задач необходимы дополнительные методики и инструменты. Аналитические технологии нужны в первую очередь людям, принимающим важные решения – руководителям, аналитикам, экспертам, консультантам. Как правило, для реальных задач бизнеса и производства не существует четких алгоритмов решения. Раньше руководители и эксперты решали такие задачи только на основе личного опыта. С помощью аналитических технологий строятся системы, позволяющие существенно повысить эффективность решений. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |