АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Сбор данных для нейронной сети

Читайте также:
  1. Cбор и подготовка данных
  2. II. Работа в базе данных Microsoft Access
  3. А4. Знание о файловой системе организации данных
  4. Автоматическое управление памятью ссылочных данных
  5. Алфавит языка и типы данных
  6. Анализ данных интервью
  7. Анализ данных с помощью сводных таблиц
  8. Анализ и интерпретация данных, полученных в ходе эксперементальной работы.
  9. Анализ собранных данных
  10. Архитектуры процессоров по разделению памяти данных и команд (Архитектура фон Неймана, Гарвардская архитектура).
  11. Библиографические базы данных имеют ряд недостатков. Что к ним не относится?
  12. В12. Поиск информации в базе данных по сформулированному условию

 

При обучении нейронной сети важным этапом является сбор данных, которые будут подаваться на входы ИНС. Обучающий набор данных представляет собой набор наблюдений, для которых указаны значения входных и выходных переменных. Первый вопрос, который нужно решить, - какие переменные использовать и сколько (и каких) наблюдений собрать.

Выбор переменных осуществляется интуитивно. Нейронные сети могут работать с числовыми данными, лежащими в определенном ограниченном диапазоне. Это создает проблемы в случаях, когда данные имеют нестандартный масштаб, когда в них имеются пропущенные значения, и когда данные являются нечисловыми. Числовые данные масштабируются в подходящий для сети диапазон, а пропущенные значения можно заменить на среднее значение (или на другую статистику) этой переменной по всем имеющимся обучающим примерам.

Более трудной задачей является работа с данными нечислового характера. Чаще всего нечисловые данные бывают представлены в виде номинальных переменных типа Пол = { Муж, Жен }. Переменные с номинальными значениями можно представить в числовом виде. Однако,нейронные сети не дают хороших результатов при работе с номинальными переменными, которые могут принимать много разных значений.

Пусть, например, мы хотим научить нейронную сеть оценивать стоимость объектов недвижимости. Цена дома очень сильно зависит от того, в каком районе города он расположен. Город может быть подразделен на несколько десятков районов, имеющих собственные названия, и кажется естественным ввести для обозначения района переменную с номинальными значениями. К сожалению, в этом случае обучить нейронную сеть будет очень трудно, и вместо этого лучше присвоить каждому району определенный рейтинг (основываясь на экспертных оценках).

Нечисловые данные других типов можно либо преобразовать в числовую форму, либо объявить незначащими. Значения дат и времени, если они нужны, можно преобразовать в числовые, вычитая из них начальную дату (время). Обозначения денежных сумм преобразовать совсем несложно. С произвольными текстовыми полями (например, фамилиями людей) работать нельзя и их нужно сделать незначащими.

Вопрос о том, сколько наблюдений нужно иметь для обучения сети, часто оказывается непростым. Известен ряд эвристических правил, увязывающих число необходимых наблюдений с размерами сети (простейшее из них гласит, что число наблюдений должно быть в десять раз больше числа связей в сети). На самом деле это число зависит также от (заранее неизвестной) сложности того отображения, которое нейронная сеть стремится воспроизвести. С ростом количества переменных количество требуемых наблюдений растет нелинейно, так что уже при довольно небольшом (например, пятьдесят) числе переменных может потребоваться огромное число наблюдений. Эта трудность известна как "проклятие размерности”.

Для большинства реальных задач бывает достаточно нескольких сотен или тысяч наблюдений. Для особо сложных задач может потребоваться еще большее количество, однако очень редко может встретиться (даже тривиальная) задача, где хватило бы менее сотни наблюдений.

Во многих реальных задачах приходится иметь дело с не вполне достоверными данными. Значения некоторых переменных могут быть искажены шумом или частично отсутствовать. Нейронные сети в целом устойчивы к шумам. Однако у этой устойчивости есть предел. Например, выбросы, т.е. значения, лежащие очень далеко от области нормальных значений некоторой переменной, могут исказить результат обучения. В таких случаях лучше всего постараться обнаружить и удалить эти выбросы (либо удалив соответствующие наблюдения, либо преобразовав выбросы в пропущенные значения). Однако такое устойчивое к выбросам обучение, как правило, менее эффективно, чем стандартное.

Таким образом, всякая нейронная сеть принимает на входе числовые значения и выдает на выходе также числовые значения. Передаточная функция для каждого элемента сети обычно выбирается таким образом, чтобы ее входной аргумент мог принимать произвольные значения, а выходные значения лежали бы в строго ограниченном диапазоне ("сплющивание"). При этом, хотя входные значения могут быть любыми, возникает эффект насыщения, когда элемент оказывается чувствительным лишь к входным значениям, лежащим в некоторой ограниченной области. Очевидно, что при решении реальных задач методами нейронных сетей требуются этапы предварительной обработки - пре-процессирования - и заключительной обработки - пост-процессирования данных.

Следующим важным аспектом, который необходимо учитывать при обучении ИНС, является репрезентативность обучающих, контрольных и тестовых множеств. Перечислим ряд причин, которые ухудшают качество обучающего множества:

1. Обычно в качестве обучающих берутся исторические данные. Если обстоятельства изменились, то закономерности, имевшие место в прошлом, могут больше не действовать.

2. Нейронная сеть обучается только на тех данных, которыми она располагает и может выдавать неправильные результаты в новой для нее ситуации.

3. Сеть обучается тому, чему проще всего научиться. Классическим примером является система машинного зрения, предназначенная для автоматического распознавания танков. Сеть обучалась на ста картинках, содержащих изображения танков, и на ста других картинках, где танков не было. Был достигнут стопроцентно "правильный" результат. Но когда на вход сети были поданы новые данные, она безнадежно провалилась. В чем же была причина? Выяснилось, что фотографии с танками были сделаны в пасмурный, дождливый день, а фотографии без танков - в солнечный день. Сеть научилась улавливать (очевидную) разницу в общей освещенности. Чтобы сеть могла результативно работать, ее следовало обучать на данных, где бы присутствовали все погодные условия и типы освещения, при которых сеть предполагается использовать.

4. При обучении ИНС важное значение приобретают пропорции, в которых представлены данные различных типов. Сеть, обученная на 900 хороших и 100 плохих примерах, будет искажать результат в пользу хороших наблюдений, поэтому необходимо чтобы наблюдения различных типов были представлены равномерно.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)