АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Корреляция во времени

Читайте также:
  1. C.1. Парная регрессия и корреляция
  2. C.2. Множественная регрессия и корреляция
  3. IV. Современная текстология: от Грисбаха до настоящего времени
  4. PrPf употребляется в тех предложениях, которые можно адекватно переформулировать в виде предложений в настоящем иди будущем времени.2
  5. Автокорреляция в остатках. Критерий Дарбина-Уотсона
  6. Автокорреляция в остатках. Критерий Дарбина-Уотсона
  7. Автокорреляция в остатках. Критерий Дарбина-Уотсона
  8. Автокорреляция в остатках. Критерий Дарбина-Уотсона в оценке качества уравнений, построенных по временным рядам.
  9. Автокорреляция в остатках. Модель Дарбина – Уотсона
  10. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
  11. Автокорреляция остатков. Критерий Дарбина- Уотсона
  12. Автокорреляция случайного возмущения. Причины. Последствия

Авторегрессионная (AR-) модель (англ. Autoregressive model) — модель временных рядов, в которой значения временного ряда в данный момент линейно зависят от предыдущих значений этого же ряда. Авторегрессионный процесс порядка p (AR(p)-процесс)- определяется следующим образом

где параметры модели (коэффициенты авторегрессии), -постоянная (часто для упрощения предполагается равной нулю), а — белый шум.

Простейшим примером является авторегрессионный процесс первого порядка -AR(1)-процесс:

Для данного процесса коэффициент авторегрессии совпадает с коэффициентом автокорреляции первого порядка.

Другой простой процесс — процесс Юла — AR(2)-процесс:

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 13

1.{Q}Оценка значимости уравнения регрессии.

Оценка значимости уравнения регрессии в целом производится на основе -критерия Фишера, которому предшествует дисперсионный анализ. В математической статистике дисперсионный анализ рассматривается как самостоятельный инструмент статистического анализа. В эконометрике он применяется как вспомогательное средство для изучения качества регрессионной модели. Определение дисперсии на одну степень свободы приводит дисперсии к сравнимому виду. Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим величину -критерия Фишера:

F = или F = . (15)

Фактическое значение -критерия Фишера (15) сравнивается с табличным значением при уровне значимости и степенях свободы и , для парной линейной регрессии . При этом, если фактическое значение -критерия больше табличного, то признается статистическая значимость уравнения в целом и нулевая гипотеза отвергается.

2. Оценка и смысловое содержание коэффициентов регрессии


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)