|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Проблема мультиколлинеарности в МР, критерий их обнаруженияПри построении уравнения множественной регрессии может возникнуть проблема мультиколлинеарности факторов. Мультиколлинеарностью называется линейная взаимосвязь двух или нескольких объясняющих переменных, которая может проявляться в функциональной (явной) или стохастической (скрытой) форме. Если факторные переменные связаны строгой функциональной зависимостью, то говорят о полной мультиколлинеарности. В этом случае среди столбцов матрицы факторных переменных Х имеются линейно зависимые столбцы, и, по свойству определителей матрицы, det(XTX) = 0, т. е. матрица (XTX) вырождена, а значит, не существует обратной матрицы. Матрица (XTX)-1 используется в построении МНК-оценок. Таким образом, полная мультиколлинеарность не позволяет однозначно оценить параметры исходной модели регрессии. К каким трудностям приводит мультиколлинеарность факторов, включенных в модель, и как они могут быть разрешены? Мультиколлинеарность может привести к нежелательным последствиям:
Вид мультиколлинеарности, при котором факторные переменные связаны некоторой стохастической зависимостью, называется частичной. Если между факторными переменными имеется высокая степень корреляции, то матрица (XTX) близка к вырожденной, т. е. det(XTX) ≈ 0.
Точных количественных критериев для обнаружения частичной мультиколлинеарности не существует. О наличии мультиколлинеарности может свидетельствовать близость к нулю определителя матрицы (XTX). Также исследуют значения парных коэффициентов корреляции. Если же определитель матрицы межфакторной корреляции близок к единице, то мультколлинеарности нет. Существуют различные подходы преодоления сильной межфакторной корреляции. Простейший из них – исключение из модели фактора (или факторов), в наибольшей степени ответственных за мультиколлинеарность при условии, что качество модели при этом пострадает несущественно (а именно, теоретический коэффициент детерминации -R2y(x1...xm) снизится несущественно). С помощью какой меры невозможно избавиться от мультиколлинеарности? №3
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |