АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Проблема мультиколлинеарности в МР, критерий их обнаружения

Читайте также:
  1. T - критерий Стьюдента
  2. Абсолютная и относительная ограниченность ресурсов и проблема выбора. Кривая производственных возможностей
  3. Автокорреляция в остатках. Критерий Дарбина-Уотсона
  4. Автокорреляция в остатках. Критерий Дарбина-Уотсона
  5. Автокорреляция в остатках. Критерий Дарбина-Уотсона
  6. Автокорреляция в остатках. Критерий Дарбина-Уотсона в оценке качества уравнений, построенных по временным рядам.
  7. Автокорреляция остатков. Критерий Дарбина- Уотсона
  8. Автоматическая Система Обнаружения и Тушения Пожаров (АСОТП) «Игла-М.5К-Т»
  9. Алегоричний епос. Поява дидактич-алегорич.поеми «Роман про троянду». Проблема авторства.
  10. Алкоголизм и наркомания как медико-социальная проблема
  11. Багатозначність слова і проблема порушення норм слововживання
  12. Билингвизм как междисциплинарная проблема.

При построении уравнения множественной регрессии может возникнуть проблема мультиколлинеарности факторов. Мультиколлинеарностью называется линейная взаимосвязь двух или нескольких объясняющих переменных, которая может проявляться в функциональной (явной) или стохастической (скрытой) форме.
Выявление связи между отобранными признаками и количественная оценка тесноты связи осуществляются с использованием методов корреляционного анализа. Для решения этих задач сначала оценивается матрица парных коэффициентов корреляции, затем на ее основе определяются частные и множественные коэффициенты корреляции и детерминации, проверяется их значимость. Конечной целью корреляционного анализа является отбор факторных признаков x1, x2,…,xm для дальнейшего построения уравнения регрессии.

Если факторные переменные связаны строгой функциональной зависимостью, то говорят о полной мультиколлинеарности. В этом случае среди столбцов матрицы факторных переменных Х имеются линейно зависимые столбцы, и, по свойству определителей матрицы, det(XTX) = 0, т. е. матрица (XTX) вырождена, а значит, не существует обратной матрицы. Матрица (XTX)-1 используется в построении МНК-оценок. Таким образом, полная мультиколлинеарность не позволяет однозначно оценить параметры исходной модели регрессии.

К каким трудностям приводит мультиколлинеарность факторов, включенных в модель, и как они могут быть разрешены?

Мультиколлинеарность может привести к нежелательным последствиям:

  1. оценки параметров становятся ненадежными. Они обнаруживают большие стандартные ошибки. С изменением объема наблюдений оценки меняются (не только по величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.
  2. затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированны; параметры линейной регрессии теряют экономический смысл;
  3. становится невозможным определить изолированное влияние факторов на результативный показатель.

Вид мультиколлинеарности, при котором факторные переменные связаны некоторой стохастической зависимостью, называется частичной. Если между факторными переменными имеется высокая степень корреляции, то матрица (XTX) близка к вырожденной, т. е. det(XTX) ≈ 0.
Матрица (XTX)-1 будет плохо обусловленной, что приводит к неустойчивости МНК-оценок. Частичная мультиколлинеарность приводит к следующим последствиям:

  • увеличение дисперсий оценок параметров расширяет интервальные оценки и ухудшает их точность;
  • уменьшение t -статистик коэффициентов приводит к неверным выводам о значимости факторов;
  • неустойчивость МНК-оценок и их дисперсий.

Точных количественных критериев для обнаружения частичной мультиколлинеарности не существует. О наличии мультиколлинеарности может свидетельствовать близость к нулю определителя матрицы (XTX). Также исследуют значения парных коэффициентов корреляции. Если же определитель матрицы межфакторной корреляции близок к единице, то мультколлинеарности нет.

Существуют различные подходы преодоления сильной межфакторной корреляции. Простейший из них – исключение из модели фактора (или факторов), в наибольшей степени ответственных за мультиколлинеарность при условии, что качество модели при этом пострадает несущественно (а именно, теоретический коэффициент детерминации -R2y(x1...xm) снизится несущественно).

С помощью какой меры невозможно избавиться от мультиколлинеарности?
a) увеличение объема выборки;
b) исключения переменных высококоррелированных с остальными;
c) изменение спецификации модели;
d) преобразование случайной составляющей.

№3


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)