|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Свойства коэффициентов регрессииВ практике эконометрического анализа чаще всего используют линейную парную регрессию (функциональная зависимость 1). Уравнение регрессии будем искать в виде . Неизвестные (пока) коэффициенты являются оценками параметров . Можно сказать, что эмпирическое уравнение регрессии является оценкой по выборке регрессионной модели . Метод наименьших квадратов для линейной парной регрессии состоит в следующем: , где Вычисляя производные по параметрам и приравнивая их к нулю, приходим к следующей системе из двух уравнений Решение системы уравнений называется оценкой неизвестных параметров по методу наименьших квадратов, его можно найти по формулам: где , , , . Используя понятия выборочных дисперсий, ковариаций и корреляций оценки наименьших квадратов (решение системы уравнений) можно записать специальным образом: , , где , — выборочные средние, — выборочные дисперсии, — выборочный коэффициент корреляции. Следовательно, парная эмпирическая линейная регрессия имеет вид . Нетрудно найти значения показателя, рассчитанные по линейной регрессии для тех значений объясняющего фактора, которые содержатся в выборке , Особое значение для проверки статистической значимости парной линейной регрессии имеют остатки (разности между значениями показателя, полученными в эксперименте, и вычисленными по уравнению линейной регрессии): Вычисленному коэффициенту при объясняющем факторе в парной линейной регрессии можно дать естественную экономическую интерпретацию. Параметр b называется коэффициентом регрессии. Его величина показывает, насколько единиц изменится результат с изменением фактора на одну единицу. Параметр a, вообще говоря, не имеет экономической интерпретации. Формально – значение при . Например, если a <0, то попытка его экономической интерпретации приводят к абсурду. Зато можно интерпретировать знак при параметре а. Если, а >0, то относительное изменение результата происходит медленнее, чем изменение фактора.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |