|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Модель множественной регрессииМножественная регрессия – уравнение связи с несколькими независимыми переменными: где - зависимая переменная (результативный признак); - независимые переменные (факторы). Линейная модель множественной регрессии имеет вид: Yi = α0 + α1 xi 1 + α2 xi 2 +... + α mxim + ε i (4.1) Коэффициент регрессии α j показывает, на какую величину в среднем изменится результативный признак Y, если переменную xj увеличить на единицу измерения, т.е. α j является нормативным коэффициентом. Обычно предполагается, что случайная величина ε i имеет нормальный закон распределения с математическим ожиданием равным нулю и с дисперсией σ2. Анализ уравнения (4.1) и методика определения параметров становятся более наглядными, а расчетные процедуры существенно упрощаются, если воспользоваться матричной формой записи уравнения (4.2): Y = X α + ε (4.2) где Y — вектор зависимой переменной размерности n ×1, представляющий собой n наблюдений значений yj, X — матрица n наблюдений независимых переменных Х 1, Х 2, Х 3,..., Хm, размерность матрицы X равна n ×(m +1); α — подлежащий оцениванию вектор неизвестных параметров размерности (m +1) ×1; ε — вектор случайных отклонений (возмущений) размерности n ×1. Таким образом, Уравнение (4.1) содержит значения неизвестных параметров α0, α1, α2,..., α m. Эти величины оцениваются на основе выборочных наблюдений, поэтому полученные расчетные показатели не являются истинными, а представляют собой лишь их статистические оценки. Модель линейной регрессии, в которой вместо истинных значений параметров подставлены их оценки (а именно такие регрессии и применяются на практике), имеет вид: , (4.3) где α — вектор оценок параметров; е — вектор «оцененных» отклонений регрессии, остатки регрессии ε = Y - X α; — оценка значений Y, равная Ха. Для построения уравнения множественной регрессии чаще используются следующие функции: линейная – степенная – экспонента – гипербола - . Можно использовать и другие функции, приводимые к линейному виду.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |