АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Приведение к линейному виду регрессий, нелинейных по параметрам

Читайте также:
  1. Алгоритм оценки и проверки адекватности нелинейной по параметрам модели (на примере функции Кобба-Дугласа).
  2. Виды нелинейных регрессионных моделей, расчет их параметров
  3. ГЛАВА 1. Обоснование логической связи практической деятельности с темой исследования ВКР с приведением конкретных правовых ситуаций
  4. Группа, все участники которой имеют одинаковые характеристики по каким-либо параметрам
  5. Как вы думаете по каким параметрам можно судить об эффективности труда менеджера?
  6. Классификация нелинейных функций.
  7. Метод наименьших квадратов для моделей регрессии, нелинейных по оцениваемым коэффициентам
  8. Метод наименьших квадратов для моделей регрессии, нелинейных по факторным переменным
  9. Показатели корреляции и детерминации для нелинейных моделей регрессии
  10. Приведение к линейному виду регрессий, нелинейных по объясняющим переменным
  11. Применение ступеней с разными параметрами высоты и глубины в пределах марша не допускается.

Данный класс нелинейных моделей подразделяется на два типа: нелинейные модели внутренне линейные и нелинейные модели внутренне нелинейные.

Если нелинейная модель внутренне линейна, то она с помощью соответствующих преобразований может быть приведена к линейному виду.

Если нелинейная модель внутренне нелинейна, то она не может быть сведена к линейной функции.

Например, в эконометрических исследованиях при изучении эластичности спроса от цен широко используется степенная функция:

y = axb ε

где у – спрашиваемое количество;

х – цена;

ε – случайная ошибка.

Данная модель нелинейна относительно оцениваемых пaраметров, ибо включает параметры а и b неаддитивно. Однако ее можно считать внутренне линейной, ибо логарифмирование данного уравнения по основанию е приводит его к линейному виду:

lп у = lп а + b ln x + ln ε.

Соответственно оценки параметров а и b могут быть найдены МНК.

Если же модель представить в виде y = axb ε, то она становится внутренне нелинейной, ибо ее невозможно превратить в линейный вид. Внутренне нелинейной будет и модель вида — у = а + bхc + ε, ибо это уравнение не может быть преобразовано в уравнение, линейное по коэффициентам.

В специальных исследованиях по регрессионному анализу часто к нелинейным относят модели, только внутренне нелинейные по оцениваемым параметрам, а все другие модели, которые внешне нелинейны, но путем преобразований параметров могут быть приведены к линейному виду, относятся к классу линейных моделей.

В этом плане к линейным относят, например, экспоненциальную модель y = еa+bх ε, ибо логарифмируя ее по натуральному основанию, получим линейную форму модели

ln у = а + b х +lnε.

Среди нелинейных функций, которые могут быть приведены к линейному виду, в эконометрических исследованиях очень широко используется степенная функция y = axb ε.

Связано это с тем, что параметр b в ней имеет четкое экономическое истолкование, т. е. он является коэффициентом эластичности. Это значит, что величина коэффициента b показывает, на сколько процентов изменится в среднем результат, если фактор изменится на 1%.

В моделях, нелинейных по оцениваемым параметрам, но приводимых к линейному виду, МНК применяется к преобразованным уравнениям.

Если в линейной модели и моделях, нелинейных по переменным, при оценке параметров исходят из критерия

,

то в моделях, нелинейных по оцениваемым параметрам, требование МНК применяется не к исходным данным результативного признака, а к их преобразованным величинам, т. е. lп у, 1 .

Так, в степенной функции y = axb ε МНК применяется к преобразованному уравнению lп у = lnа + x ln b.

Это значит, что оценка параметров основывается на минимизации суммы квадратов отклонений в логарифмах:

Вследствие этого оценки параметров для линеаризуемых функций МНК оказываются несколько смещенными. При исследовании взаимосвязей среди функций, использующих ln у, в эконометрике преобладают степенные зависимости – это и кривые спроса и предложения, и кривые Энгеля, и производственные функции, и кривые освоения для характеристики связи между трудоемкостью продукции и масштабами производства в период освоения выпуска нового вида изделий, и зависимость валового национального дохода от уровня занятости.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)