АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Класи роботи підсилювального каскаду на транзисторі

Читайте также:
  1. III. Хід роботи
  2. III. Хід роботи
  3. Iснуючі класифікації
  4. V. ЗАВДАННЯ ДЛЯ САМОСТІЙНОЇ РОБОТИ
  5. VІ. Виконання практичної роботи. Інструктаж з техніки безпеки.
  6. Американська школа неокласики
  7. Аналіз класичних теорії міжнародної торгівлі.
  8. Аналіз ритмічності роботи підприємства
  9. в практиці роботи сучасного загальноосвітнього навчального закладу
  10. Варіанти завдань для домашньої контрольної роботи із дисципліни
  11. ВАРІАНТИ ЗАВДАНЬ ДЛЯ КОНТРОЛЬНОЇ РОБОТИ
  12. Варіанти завдань домашньої контрольної роботи

Ступінь нелінійних спотворень підсилюваних сигналів і к.к.д. підсилювального каскаду визначається вибором його робочого режиму (класу) роботи. В залежності від того, протягом якого часу, за час періоду вхідного сигналу, протікає струм у колекторному колі транзистора, розрізняють чотири основні режими (класи) роботи транзистора: А, АВ, В, С.

Для оцінки режиму роботи транзистора вводять параметри, який називають кутом відсічки. Кутом відсічки називають половину тієї частини періоду сигналу протягом якої протікає струм через транзистор. Кут відсічки позначають літерою θ і виражають у кутових одиницях.

В режимі класу А робоча точка не виходить за границі лінійної ділянки динамічної характеристики, а точка спокою переважно знаходиться на середині навантажувальної прямої для постійного струму. Це забезпечує мінімальні нелінійні спотворення підсилювача. Напруга зміщення в цьому режимі за абсолютним значенням завжди більша амплітудного значення вхідної напруги, а вхідний струм спокою завжди більший амплітудного значення змінної складової вхідного струму (рис.1.18). Отже в класі А струм у вихідному колі транзистора протікає протягом всього періоду напруги підсилюваного сигналу. Кут відсічки в класі А складає θ =180о =π. Цей клас роботи застосовується переважно в каскадах попереднього підсилення, а також в каскадах потужного підсилення незначної потужності. Основна перевага режиму А – мале значення коефіцієнту гармонік, а основний недолік – низьке значення к.к.д. каскаду, яке переважно не перевищує (20-30)%.

 

Рис.1.18. Вибір робочої точки на вхідній характеристиці

транзистора в класі А

У випадку низького рівня сигналу, коли вибір робочої точки некритичний з огляду на максимально допустимі параметри транзистора, необхідно враховувати залежність параметрів від режиму роботи транзистора. Значення напруги і струму транзистора в режимі спокою необхідно вибирати в залежності від конкретного застосування підсилювального каскаду. При різних режимах каскаду за постійним струмом змінюються значення параметрів транзистора, зокрема:

· коефіцієнти підсилення за струмом – (α або β);

· ємність колекторного переходу – Ск;

· гранична частота підсилення транзистора за струмом – (fα або fβ);

· коефіцієнт шуму транзистора – F.

В багатьох випадках необхідно орієнтуватися на типовий режим транзистора, який рекомендується довідковою літературою, але в ряді випадків відхід від рекомендованого режиму не тільки допустимий, але й необхідний.

В режимі класу В напруга зміщення вибирають таким чином, щоб точка спокою Р знаходилася на самому початку динамічної характеристики для постійного струму. При наявності вхідного сигналу стум у вихідному колі існує протягом половини періоду вхідного сигналу. В транзисторних підсилювальних каскадах транзистор відкритий тільки протягом половини періоду вхідного сигналу (рис.1.19), тому в класі В кут відсічки складає , а робоча точка в режимі спокою вибирається при малих значеннях колекторного струму близьких до Ік 0.

 

Рис.1.19. Вибір робочої точки на вхідній характеристиці

транзистора в класі В

Основна перевага класу В – це мале споживання енергії від джерела живлення і високий, у порівнянні з класом А, к.к.д., який досягає
(60-70)%. Недолік такого класу – великий рівень нелінійних спотворень і переважно застосовується в двотактних схемах підсилення потужності.

Клас АВ – займає проміжне положення між класами А і В. Струм в колі колектора транзистора протікає протягом часу більшого за половину періоду. Кут відсічки в класі АВ знаходиться в межах . Цей клас роботи більш економічний ніж клас А і має менші нелінійні спотворення ніж в класі В. Застосовується в двотактних підсилювачах потужності, коли необхідно поєднати низький рівень нелінійних спотворень з високим значенням к.к.д.

 

Рис.1.20. Вибір робочої точки на вхідній характеристиці

транзистора в класі АВ

 

При роботі підсилювального каскаду в режимі класу С напруга зміщення вибирають такого значення, при якому точка спокою знаходиться лівіше початку вхідної динамічної характеристики транзистора (рис.1.21). В цьому випадку струм спокою вхідного кола транзистора дорівнює нулю.

В цьому режимі струм у вихідному колі підсилювального елемента протікає протягом часу меншого за половину періоду вхідного сигналу. Кут відсічки в класі С знаходиться в межах . В класі С точка спокою знаходиться в режимі відсічки.

 

Рис.1.21. Вибір робочої точки на вхідній характеристиці

транзистора в класі С

 

Цей режим більш економічний ніж в класі В, к.к.д. досягає 85% і застосовується в потужних резонансних підсилювачах потужності де навантаженням є резонансний -контур, який налагоджений на частоту вхідного сигналу. Такий характер навантаження дозволяє значно зменшити рівень нелінійних спотворень вихідного сигналу, який в цьому випадку більший ніж в класі В.

1.6. Подача зміщення у вхідні кола транзисторів
і стабілізація точки спокою

 

Підсилювальний каскад зберігає працездатність і забезпечує необхідні вимоги, якщо струм в колі колектора при відсутності сигналу (струм спокою колектора) не виходить за певні межі при зміні температури, старінні елементів підсилювача та їх заміні. Зменшення струму спокою викликає зменшення струму, напруги і потужності сигналу на виході каскаду, зменшенню коефіцієнта підсилення, збільшенню нелінійних спотворень. Збільшення струму спокою збільшує споживану потужність, зменшує к.к.д. каскаду, викликає перегрів підсилювальних елементів та інших деталей, а деколи приводить до виходу їх з ладу. Збільшення струму спокою відносно мінімального значення в режимі А переважно допускають в (1,2 ÷ 1,3) разів в каскадах потужного підсилення і не більш як
(1,3 ÷ 1,5) разів в малопотужних каскадах попереднього підсилення.

Основними причинами зміни струму спокою каскаду при заміні біполярного транзистора або змінні температури є:

 

· зміна коефіцієнта підсилення струму транзистора при зміні температури - ;

· зміна некерованого струму колектора транзистора для кремнієвих транзисторів і для германієвих транзисторів;

· температурне зміщення вхідної характеристики транзистора .

Для встановлення необхідного положення робочої точки (необхідного значення струму спокою колектора) у вхідне коло транзистора необхідно подати напругу зміщення, полярність і значення якої залежить від типу провідності транзистора і положення його робочої точки.

Найпростіший спосіб подачі зміщення на біполярний транзистор є:

· зміщення фіксованим струмом бази;

· фіксованою напругою бази;

· фіксованим струмом емітера.

 

При зміщені фіксованим струмом бази (рис.1.22) напруга зміщення між базою і емітером створюється струмом зміщення бази, який проходить через опір переходу база-емітер, такий спосіб зміщення придатний лише для каскадів, які працюють в режимі А. Оскільки опір резистора в колі бази набагато більший за опір переходу база-емітер транзистора для постійного струму, то значення струму бази транзистора в стані спокою визначається напругою колекторного живлення і опором базового резистора і залишається практично незмінним при зміні температури, старінні та заміні транзистора, тому такий спосіб подачі зміщення і називають зміщенням фіксованим струмом бази. Опір резистора в колі бази буде дорівнювати

 

 

де Ек - напруга колекторного живлення каскаду;

- напруга зміщення база-емітер, яка визначається положенням робочої точки в режимі спокою на вхідній характеристиці транзистора;

- статичний коефіцієнт підсилення транзистора в схемі з спільною базою;

Ік 0 - некерований початковий струм колектора транзистора;

І 0 к , І 0 е - струми спокою колектора і емітера відповідно.

 

Рис.1.22. Схема зміщення фіксованим струмом бази

 

Зміщення фіксованим струмом бази деколи застосовується в схемах, які працюють в лабораторних умовах, коли зміна температури оточуючого середовища знаходиться в межах , і допускається підбір значення резистора . Така схема зміщення не застосовується в підсилювальній апаратурі, яка призначена для серійного виробництва.

Схема подання зміщення фіксованою напругою бази зображена на рис.1.23 і використовується для каскадів, які працюють в режимі А і В, але вона менш економічна, оскільки додатково виділяється потужність на резисторах базового подільника напруги. Резистори подільника напруги повинні мати менший опір для постійного струму від ділянки база-емітер транзистора, в цьому випадку напруга зміщення буде залишатися практично незмінною при зміні напруги і старінні транзистора. Значення опорів подільника напруги розраховуються за такими виразами

 

 

де – струм спокою бази транзистора;

ІП – струм базового подільника напруги, який в залежності від значення струму спокою бази складає .

 

Рис.1.23. Схема зміщення транзистора фіксованою напругою база-емітер

 

При зміщенні фіксованою напругою база-емітер заміна транзистора і зміна температури набагато менше змінюють струм спокою колектора транзистора.

Схема з фіксованою напругою бази задовільно підтримує стабільність положення робочої точки в діапазоні температур оточуючого середовища , а також мало критична при заміні транзистора особливо при низькоомному подільнику напруги, оскільки в цьому випадку відносно великі зміни базового струму будуть викликати незначні зміни напруги на базі транзистора.

 

 

 

 

 

Рис.1.24. Схема зміщення транзистора фіксованим струмом емітера

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.)