АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Формулы полной вероятности и Баеса: 23 стр

Читайте также:
  1. Анализ вероятности
  2. Аналитическая запись логической формулы КЦУ
  3. В отделении реанимации на экране кардиографа у пациента определялась картина полной предсердно-желудочковой блокады (нарушения проведения импульса в проводящей системе сердца).
  4. Волна вероятности. Уравнение Шредингера
  5. Вопрос 2 Формула апостериорной вероятности Байеса
  6. Вопрос 2 Формула апостериорной вероятности Байеса.
  7. Вопрос 2 Формула апостериорной вероятности Байеса.
  8. Вопрос№37 Закон Ома для полной цепи
  9. Вывод общей формулы обратной матрицы
  10. Выражения. Формулы.
  11. Гироскоп.Вывод формулы частоты прецессии гироскопа.
  12. Глава 13 Практика достоверного определения полной восстановительной стоимости

Теорема 1. Если события Н1, Н2,…,Нn образуют полную группу, то вероятность любого события А можно вычислить по формуле полной вероятности:

, или .

Так как события образуют полную группу, то можно записать .

Событие А может произойти только с одним из событий Hi, i {1,2,…,n}, то А=АН1+АН2+…+АНn. По теореме сложения вероятностей

Замечание: при применении формулы полной вероятности события Н1,Н2,…,Нn, образующие полную группу, называются гипотезами.

Теорема 2. Пусть события Н1, Н2, …, Нn образуют полную группу, А–некоторое событие, причем P(A)≠0, тогда имеет место формула Байеса:

,

Замечание. При применении формулы Байеса вероятности называются априорными вероятностями гипотез. Вероятности P(H1|A),…,P(Hn|A) называют апостериорными вероятностями гипотез.

 

4)схема независимых испытаний Бернули. Полиномиальное распределение:

Предположим, что в результате испытания возможны два исхода: «У» и «Н», которые мы называем успехом и неудачей.

, , p+q=1.

Предположим, что мы производим независимо друг от друга n таких испытаний.

Последовательность n испытаний называется испытаниями Бернулли, если эти испытания

независимы, а в каждом из них возможны два исхода, причем вероятности этих исходов не меняются от испытания к испытанию.

Элементарным исходом будет являться:

(w1,w2,…,wn), .

Всего таких исходов 2n.

(1)

Формула (1) показывает, что события независимы.

Обозначим через µ число успехов в n испытаниях Бернулли. — вероятность того, что в n испытаниях произошло k успехов. Рассмотрим событие .

По теореме сложения получим

Таким образом, получим

—формула Бернулли.

Предположим, что в результате испытания возможны k исходов E1, E2, …, Ek,

P(Ei)=pi, . Тогда вероятность того, что в n независимых испытаниях событие E1 появиться r1 раз, E2 – r2 раз, …, Ek – rk раз вычисляется по формуле:

где

Эта формула полиномиальное распределения, обобщающая формулу Бернулли.

 


1 | 2 | 3 | 4 | 5 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)