|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Формулы полной вероятности и Баеса: 23 стрТеорема 1. Если события Н1, Н2,…,Нn образуют полную группу, то вероятность любого события А можно вычислить по формуле полной вероятности: , или . Так как события образуют полную группу, то можно записать . Событие А может произойти только с одним из событий Hi, i {1,2,…,n}, то А=АН1+АН2+…+АНn. По теореме сложения вероятностей Замечание: при применении формулы полной вероятности события Н1,Н2,…,Нn, образующие полную группу, называются гипотезами. Теорема 2. Пусть события Н1, Н2, …, Нn образуют полную группу, А–некоторое событие, причем P(A)≠0, тогда имеет место формула Байеса: , Замечание. При применении формулы Байеса вероятности называются априорными вероятностями гипотез. Вероятности P(H1|A),…,P(Hn|A) называют апостериорными вероятностями гипотез.
4)схема независимых испытаний Бернули. Полиномиальное распределение: Предположим, что в результате испытания возможны два исхода: «У» и «Н», которые мы называем успехом и неудачей. , , p+q=1. Предположим, что мы производим независимо друг от друга n таких испытаний. Последовательность n испытаний называется испытаниями Бернулли, если эти испытания независимы, а в каждом из них возможны два исхода, причем вероятности этих исходов не меняются от испытания к испытанию. Элементарным исходом будет являться: (w1,w2,…,wn), . Всего таких исходов 2n. (1) Формула (1) показывает, что события независимы. Обозначим через µ число успехов в n испытаниях Бернулли. — вероятность того, что в n испытаниях произошло k успехов. Рассмотрим событие . По теореме сложения получим Таким образом, получим —формула Бернулли. Предположим, что в результате испытания возможны k исходов E1, E2, …, Ek, P(Ei)=pi, . Тогда вероятность того, что в n независимых испытаниях событие E1 появиться r1 раз, E2 – r2 раз, …, Ek – rk раз вычисляется по формуле: где Эта формула полиномиальное распределения, обобщающая формулу Бернулли.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |