|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Вывод общей формулы обратной матрицыЧтобы найти вид нужной формулы, рассмотрим вначале решение системы из двух линейных уравнений для двух неизвестных: Умножим первое уравнение системы на , а второе – на и сложим получившиеся уравнения. Результатом этих действий будет уравнение: . Теперь умножим первое уравнение на , а второе – на , после сложения получим: . Используя полученные равенства, выпишем формулы для нахождения неизвестных: . (1) а) Возьмем матрицу второго порядка . Обозначим обратную к ней: . Согласно определению обратной матрицы должно выполняться условие: . Выполнив умножение в левой части и приравнивая соответствующие элементы матриц в левой и правой части, получим 2 системы для нахождения неизвестных элементов обратной матрицы: Используя формулы (1), найдем решения указанных систем: . Назовем выражение, стоящее в знаменателях формул и составленное из элементов матрицы второго порядка, определителем второго порядка. Определитель кратко обозначается . Последнее обозначение идет от латинского слова детерминант – определитель. В развернутом виде определитель второго порядка записывают так: . Чтобы вычислить определитель второго порядка, нужно из произведения элементов, стоящих на главной диагонали, вычесть произведение элементов, стоящих на побочной диагонали. Если в определителе вычеркнуть строку с номером и столбец с номером , то оставшаяся часть определителя называется минором . Взятый с определенным знаком минор имеет название алгебраического дополнения: . Из этого определения следует, что, если сумма номеров вычеркнутых строки и столбца – четное число, то алгебраическое дополнение совпадает с минором. Если же эта сумма – число нечетное, то алгебраическое дополнение противоположно минору по знаку. Используя введенные обозначения и вынося за знак матрицы общий множитель всех элементов, формулу обратной матрицы второго порядка можем записать в следующем виде: . б) Рассмотрим матрицу третьего порядка . Обозначим обратную к ней . Согласно определению: . Действуя аналогично пункту а), получим 3 системы для нахождения 9 неизвестных элементов обратной матрицы: Найдем решение первой системы. Ко второму уравнению, умноженному на , прибавим первое, умноженное на ; к третьему уравнению, умноженному на , прибавим первое, умноженное на . После этих преобразований система примет вид: В полученной системе можно выделить подсистему, в которой содержатся два уравнения для двух неизвестных. Применяя для ее решения соответствующие формулы, получим выражения для и . . Раскрыв скобки, приведя подобные слагаемые и сократив общий множитель в числителе и знаменателе, окончательно получим формулу для : . Аналогичным образом можно найти формулу для : . Подставив эти выражения в первое уравнение и проведя необходимые преобразования, получим формулу и для : . Обозначим одинаковое выражение в знаменателях, составленное из элементов матрицы третьего порядка, определителем третьего порядка, который в развернутом виде можно записать так: . Если формулу для вычисления определителей второго порядка запомнить легко, этого нельзя сказать про формулу для вычисления определителей третьего порядка. Для ее запоминания имеются специальные правила, одно из них – “правило треугольников”. Произведения элементов, стоящих на главной диагонали и в вершинах треугольников с основаниями, параллельными главной диагонали, входят в определитель с тем знаком, который получится при умножении.
Произведения элементов, стоящих на побочной диагонали и в вершинах треугольников с основаниями, параллельными побочной диагонали, входят в определитель с обратным знаком. На рисунках элементы определителя обозначены точками. Пример. Вычислить определитель третьего порядка: . Обозначим значение определителя и найдем его, используя правило треугольников. Можно также воспользоваться правилом Саррюса. Согласно этому правилу к определителю справа дописывают два первых столбца. Произведения элементов, стоящих на главной диагонали и двух линиях, ей параллельных, берут в определитель с тем знаком, который получается при умножении. Произведения элементов, стоящих на побочной диагонали и двух линиях, ей параллельных, берут в определитель с противоположным знаком. Пример. Вычислить определитель . Припишем к данному определителю два первых столбца и вычислим его. . Проанализируем числители формул . Выражение представляет собой определитель , который получится, если в определителе третьего порядка вычеркнуть первую строку и первый столбец, т.е. . Соответственно, ; . Решая две оставшиеся системы аналогично и используя введенные обозначения, получим формулу обратной матрицы третьего порядка: . Сравнение двух выведенных формул позволяет, пользуясь индуктивным подходом, написать формулу обратной матрицы для квадратной матрицы произвольного порядка : . Из полученной формулы следует, что обратную матрицу можно найти только для невырожденных матриц, т.е. таких, у которых определитель не равен 0. Для того, чтобы составить обратную матрицу, необходимо: 1) вычислить определитель матрицы; 2) если определитель отличен от 0, то найти алгебраические дополнения всех элементов; 3) поставив алгебраические дополнения на место элементов, составить матрицу и транспонировать ее; 4) разделить элементы транспонированной матрицы из алгебраических дополнений на величину определителя (если элементы матрицы не делятся нацело на определитель, то деление записывают в виде множителя перед матрицей). Пример. Найти матрицу, обратную матрице . 1) Вычислим определитель . 2) Найдем алгебраические дополнения элементов матрицы: 3) Составим матрицу из алгебраических дополнений : . и транспонируем ее: . 3) Выпишем обратную матрицу: . Для проверки найдем произведение : Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.) |