АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Возведение квадратной матрицы в целую степень

Читайте также:
  1. IV степень (особо тяжелая)
  2. SWOT- анализ и составление матрицы.
  3. Активность и степень воздействия на другие государственные орга-
  4. Ввод, вывод вектора и матрицы
  5. Видимая и действительная степень сбраживания
  6. Возведение в степень по модулю
  7. Возведение зданий с кирпичными стенами
  8. Возведение монолитных ж/б плит перекрытий и наружных стен
  9. Вывод общей формулы обратной матрицы
  10. Вычисление всех собственных значений положительно определенной симметрической матрицы
  11. Глава 1.СОБСТВЕННЫЕ КОЛЕБАНИЯ В ЛИНЕЙНОЙ КОНСЕРВАТИВНОЙ СИСТЕМЕ С ОДНОЙ СТЕПЕНЬЮ СВОБОДЫ (ГАРМОНИЧЕСКИЙ ОСЦИЛЛЯТОР)
← 28.9. Умножение матрицы на вектор и матрицы на... 28.11. Исключение элементов массивов →

Операция перемножения матриц дает возможность путем повторного умножения реализовать операцию возведения квадратной матрицы в целую степень. Это, в свою очередь, позволяет вычислять матричные степенные ряды, через которые выражаются матричные функции матричного аргумента. Рассмотрим алгоритм возведения квадратной матрицы A, содержащей n строк и n столбцов в степень m. Результирующую матрицу будем именовать B.

B = Am = E x A x A x...x A,

где E – единичная матрица. Операция умножения выполняется m раз.

Блок-схема этого алгоритма представлена на рис. 28.20. Она представлена на двух уровнях детализации. На первом уровне (изображение слева) основные блоки представлены укрупненно. На изображении справа первый и последний блоки детализированы до основных алгоритмических конструкций. Блок умножения матрицы на матрицу не детализирован, т.к. он рассмотрен в предыдущем подразделе и предполагается, что в данном алгоритме он реализован как вызов вспомогательного алгоритма.

В основе алгоритма лежит цикл повторного умножения (по переменной k), который выполняется m раз. До начала цикла в выходной матрице B формируется единичная матрица. В теле основного цикла вызовом вспомогательного алгоритма выполняется умножение матрицы B на возводимую матрицу A, результатом является матрица C. Второй фрагмент тела цикла заключается в передаче данных от матрицы С матрице B. Детализации первого и третьего блока просты и не требуют особых пояснений.

← 28.9. Умножение матрицы на вектор и матрицы на... 28.11. Исключение элементов массивов →

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)