|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Вычисление всех собственных значений положительно определенной симметрической матрицыСобственные значения такой матрицы вещественные и положительные, а собственные векторы выбираются таким образом, чтобы выполнялось условие ортогональности: , , , . Система для определения собственного вектора , соответствующего собственному значению имеет вид: (5.12) В связи с тем, что собственный вектор определяется с точностью до числового множителя, предположим, что одна из компонент собственного вектора равна 1, т.е. . В итоге получаем систему нелинейных алгебраических уравнений с n неизвестными , которую можно решать методом итерации: (5.13) Начальное приближение для системы (5.13) выбирается произвольно. Если метод итерации для системы (5.13) сходится, то для достаточно больших значений k можно приближенно положить , . Для определения и воспользуемся двумя соотношениями: и условием ортогональности векторов и : (5.14) где . Учитывая, что определяется с точностью до числового множителя, положим . Исключив из (5.14) уравнение для определения и получим систему из (n-1) – го нелинейного алгебраического уравнения для определения неизвестных . Задавая произвольно начальное приближения, и решая систему методом итерации, получим: (5.15) Для контроля правильности вычисления можно воспользоваться уравнением: . Для определения и воспользуемся тремя соотношениями: и условиями ортогональности векторов и , а также векторов и . Далее процесс аналогичен процессу нахождения и и т.д. Замечание: последующие собственные значения и векторы вычисляются с меньшей точностью, чем предыдущие. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |