АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Кусочно-линейное и кусочно-квадратичное интерполирование

Читайте также:
  1. Кусочно-кубические сплайны
  2. Мастер п/о: БОРТНИКОВ В.И.
  3. Методика решения задачи
  4. Муфты упругие втулочно-пальцевые
  5. Объем параллелепипеда - формула (14).
  6. Понятие об интерполяции и экстраполяции уровней динамического ряда
  7. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
  8. ПРОВЕРОЧНЫЙ РАСЧЕТ ПОДШИПНИКОВ
  9. Способы интерполирования горизонталей и особенности их проведения
  10. Способы определения площадей.

Иногда, интерполирование по всей совокупности точек бывает не достаточным. В этих случаях можно воспользоваться объединением фрагментов графиков полиномов низкой степени и интерполированием между последовательными узлами. Самый простой в использовании полином первой степени. Он создает ломаную, состоящую из отрезков, которые проходят через две точки. Чтобы представить эту кусочно-линейную кривую, используется полином Лагранжа:

или используя формулу угла наклона отрезка линии в точке:

,

где - линейный сплайн на отрезке [xk+1, xk], yk – заданное значение функции, полученное экспериментально в заданных узлах. Аналогично можно построить кусочно-квадратичный полином.

Недостатком этого подхода является резкое изменение кривизны в общих узлах.

Пример: Для функции y=f(x), заданной таблично осуществить кусочно-линейное интерполирование и кусочно-квадратичное интерполирование.

x   0,5          
f(x) 1,5            

Решение: Осуществим кусочно-линейное интерполирование. Для этого разобьем данную функцию на элементарные промежутки, определяемые соседними числами верхней строки таблицы, и на каждом из участков строим прямую линию (полином первой степени), т.е.

Рис. 3.1. График полученного кусочно-линейного интерполирования.

 

Осуществим кусочно-квадратичное интерполирование. Для этого будем рассматривать тройки известных точек отрезков [0;1],[1;3],[3;5]. На каждом из этих отрезках по известным точкам построим полином второй степени. В результате получим:

Рис.3.2. График полученного кусочно-квадратичного интерполирования.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)