|
||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Интерполяционный многочлен ЛагранжаПусть на отрезке [a,b] заданы (n+1) точка x0, x1, ¼, xn и значения функции f в этих точках. Будем строить интерполяционный многочлен вида , где - многочлены степени n, удовлетворяющие условиям так как требуем, чтобы значения интерполяционного многочлена и значения функции f(x) совпадали в узлах интерполяции i, т.е. . Тогда можно искать в виде: где - некоторая константа, которую найдем из условия , тогда Если обозначить и продифференцировать это выражение по х, полагая х=хj, то последнее выражение можно записать в виде: , где Таким образом, получим многочлен , который называется интерполяционным многочленом Лагранжа. Пусть узлы интерполирования являются равноотстоящими, т.е. , если ввести новую переменную , то многочлен Лагранжа для равноотстоящих узлов запишется в виде , т.к. . Интерполяционный многочлен Лагранжа имеет существенный недостаток: если при выбранном числе узлов выяснилось, что интерполяционный многочлен недостаточно точно находит значение функций в заданной точке, то при добавлении одного или нескольких узлов все вычисления необходимо проводить заново. В том случае, когда требуется найти не аналитическое выражение, а лишь его значение в некоторой точке, от этого недостатка можно избавиться, воспользовавшись интерполяционной схемой Эйткена. По этой схеме значение интерполяционного многочлена Лагранжа находится путем последовательного применения единообразного процесса
где , , , . Применяя эту схему, можно постепенно подключать все новые и новые узлы до тех пор, пока желаемая точность не будет достигнута. Если все вычисления проведены точно, то интерполяционный многочлен Лагранжа совпадает с заданной функцией в узлах интерполирования. Однако он будет отличен от нее в остальных точках. Исключением является случай, когда сама функция f(x) является многочленом степени не выше n. Оценка погрешности интерполяционного многочлена Лагранжа, если функция f(x) имеет на [a,b] непрерывные производные (n+1)-го порядка, имеет вид , где x - некоторая точка [a,b] или . Это выражение может служить оценкой отклонения полинома Лагранжа от f(x) в том случае, когда можно оценить . Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |