|
||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Интерполяционный многочлен ЛагранжаПусть на отрезке [a,b] заданы (n+1) точка x0, x1, ¼, xn и значения функции f в этих точках. Будем строить интерполяционный многочлен вида так как требуем, чтобы значения интерполяционного многочлена и значения функции f(x) совпадали в узлах интерполяции i, т.е. Тогда где Если обозначить
где Таким образом, получим многочлен
который называется интерполяционным многочленом Лагранжа. Пусть узлы интерполирования являются равноотстоящими, т.е.
т.к. Интерполяционный многочлен Лагранжа имеет существенный недостаток: если при выбранном числе узлов выяснилось, что интерполяционный многочлен недостаточно точно находит значение функций в заданной точке, то при добавлении одного или нескольких узлов все вычисления необходимо проводить заново. В том случае, когда требуется найти не аналитическое выражение, а лишь его значение в некоторой точке, от этого недостатка можно избавиться, воспользовавшись интерполяционной схемой Эйткена. По этой схеме значение интерполяционного многочлена Лагранжа находится путем последовательного применения единообразного процесса
где Применяя эту схему, можно постепенно подключать все новые и новые узлы до тех пор, пока желаемая точность не будет достигнута. Если все вычисления проведены точно, то интерполяционный многочлен Лагранжа совпадает с заданной функцией в узлах интерполирования. Однако он будет отличен от нее в остальных точках. Исключением является случай, когда сама функция f(x) является многочленом степени не выше n. Оценка погрешности интерполяционного многочлена Лагранжа, если функция f(x) имеет на [a,b] непрерывные производные (n+1)-го порядка, имеет вид Это выражение может служить оценкой отклонения полинома Лагранжа от f(x) в том случае, когда можно оценить Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |