|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Метод КрыловаСуть метода заключается в построении алгебраического образа. По виду которого можно было бы сразу записать собственный многочлен вещественной матрицы А. Возьмем произвольный вектор , согласованный по размерности с матрицей А, и по этому вектору будем составлять последовательность векторов , , … до тех пор пока не встретится такой вектор , т.е. вектор являющийся линейной комбинацией предыдущих линейно независимых векторов. Для определения номера m составляют максимально возможную линейную комбинацию, т.е. полагают m=n: (5.11) Здесь , при - координаты вектора , . В результате для определения имеем систему n – линейных алгебраических уравнений. Для случая линейной независимости векторов , ¼, полученную систему решают методом Гаусса. В том случае, когда линейно независимы только m первых векторов, находят m коэффициентов системы . Зная все значения коэффициентов можно записать собственный многочлен матрицы А: . Решив уравнение , найдем все собственные значения матрицы А. В том случае, когда найдены только m коэффициентов системы, можно записать многочлен , который является делителем собственного многочлена матрицы А. Решив уравнение: , найдем часть собственных значений матрицы А. Изменяя исходный вектор и проделав все вычисления заново, находим все оставшиеся собственные значения. Собственный вектор соответствующий собственному значению ищется в виде линейной комбинации линейно-независимых векторов: , где коэффициенты ; , ¼, .- Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |