|
|||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Метод линеаризации данных по методу наименьших квадратовТехника линеаризации данных применяется для подгонки кривых, позволяющих при преобразовании переменных получить линейную зависимость вида . В таблице 1 приведены основные приемы линеаризации. Таблица 1. Таблица замены переменной для метода линеаризации данных
Пусть заданы N точек с различными абсциссами {xk}. Величина среднеквадратичной ошибки будет минимальной, когда каждая частная производная по неизвестным (в данном случае неизвестные А и В) будет обращаться в нуль, т.е. А и В являются решением нормальной системы уравнений вида: (3.4) Решая систему нормальных уравнений (3.4) находим искомые коэффициенты А и В. Пример: Аппроксимировать таблично заданную функцию по пяти заданным точкам полиномом первой степени или построить линейную зависимость с помощью метода наименьших квадратов.
Решение: 1. Запишем нормальную систему для - полинома первой степени: , где N = 5 – количество точек. 2. Вычислим все необходимые суммы:N=5, , , , . Таким образом, подставляя числовые значения сумм в нормальную систему и решая ее, относительно неизвестных получаем, что А=0,8 и В=0,1 3. Таким образом, 4. Проверяем полученный полином. Для наглядности построим исходные данные и полученную зависимость на графике: Замечания: Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |