|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Кусочно-кубические сплайны
Определение: Функция S(x) называется кубическим сплайном, если существует N кубических полиномов Sk(x) с коэффициентами sk,0, sk,1, sk,2, sk,3, которые удовлетворяют следующим условиям: 1. , для и , т.е. кубический сплайн состоит из кубических полиномов. 2. Кусочно-кубическое интерполирование задается совокупностью точек, т.е. для . 3. Кусочно-кубическое представление состояло из кривых, которые являются гладкими непрерывными функциями. Вторая и первая производные должны быть непрерывны: , , . Наиболее часто на практике используется кубический сплайн следующего вида: . Для задания сплайна коэффициенты , , , - подбираются так, чтобы , а первая и вторая производные были непрерывными. Леммы о сплайнах:
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |