|
|||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Общие понятия. В инженерной практике часто используют совокупности точек, абсциссы которых различны, полученные в результате экспериментовВ инженерной практике часто используют совокупности точек, абсциссы которых различны, полученные в результате экспериментов. Назначение численных методов заключается в определении зависимости, которая связывает данный набор точек. Другими словами в этом случае численные методы определяют класс допустимых формул, коэффициенты которых должны быть определены. Существует множество различных типов функций, которыми можно воспользоваться. Рассмотрим класс линейных функций вида: . Все рассмотренные до этого методы позволяли получить полиномы, достаточно хорошо аппроксимирующие или интерполирующие данные при условии, что эти данные достаточно точны, т.е. точки получены, по крайней мере, с пятью знаками точности. Однако, часто в измерениях экспериментальная ошибка достаточно велика, т.е. истинное значение удовлетворяет равенству: , где - ошибка измерения. Для того, чтобы определить насколько далеко от данных лежит кривая можно воспользоваться следующими нормами: - максимальная ошибка, (3.1) - средняя ошибка, (3.2) - среднеквадратичная ошибка. (3.3) Пример: Сравним ошибки для линейного приближения функции по заданной таблице точек
Решение: Вычислим все три вида ошибок: . . . Таким образом, построенная наилучшим образом линия определяется минимизацией одной из величин, заданных выражениями (3.1) – (3.2). В связи с тем, что третью норму легче минимизировать выбирают её. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |