АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Формула Ньютона для интерполирования назад и экстраполирования вперед

Читайте также:
  1. Барометрическая формула
  2. Барометрическая формула. Распределение Больцмана.
  3. Взаимодействие тел. Сила. Второй закон Ньютона.
  4. Визначити енергію вибуху балону. Формула (3)
  5. Внешний фотоэффект и его законы. Формула Эйнштейна для фотоэффекта.
  6. Внутреннее трение (вязкость) жидкости. Уравнение Ньютона
  7. Вопрос 2 Формула апостериорной вероятности Байеса
  8. Вопрос 2 Формула апостериорной вероятности Байеса.
  9. Вопрос 2 Формула апостериорной вероятности Байеса.
  10. Вопрос 4 Законы динамики Ньютона
  11. Вопрос№7 Законы динамики Ньютона. Сила массы
  12. Второй закон Ньютона

Пусть точка интерполирования х находится ближе к правому концу отрезка [a,b] или справа от него. За первый узел интерполирования примем ближайший и обозначим его через хk. Тогда интерполяционная формула Ньютона для интерполирования назад и экстраполирования вперед примет вид

,

где - новая переменная.

Связь разностных соотношений и конечных разностей:

, , и т.д.

Остаток в этом случае имеет вид

.

Правило определения максимального порядка разностей, которые ведут себя правильно:

если , а , то максимальный порядок разностей, которые ведут себя правильно, равен j. Использование разности порядка (j+1) приведет к искажению результата. Здесь e - абсолютная погрешность вычисленных значений уi.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)