АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Решение систем с помощью обратной матрицы (матричный способ)

Читайте также:
  1. A) к любой экономической системе
  2. A) прогрессивная система налогообложения.
  3. C) Систематическими
  4. CASE-технология создания информационных систем
  5. I СИСТЕМА, ИСТОЧНИКИ, ИСТОРИЧЕСКАЯ ТРАДИЦИЯ РИМСКОГО ПРАВА
  6. I. Основні риси політичної системи України
  7. I. ОСНОВНЫЕ ПОНЯТИЯ (ТЕРМИНЫ) ЭКОЛОГИИ. ЕЕ СИСТЕМНОСТЬ
  8. I. Решение логических задач средствами алгебры логики
  9. I. Суспільство як соціальна система.
  10. I. Формирование системы военной психологии в России.
  11. I.2. Система римского права
  12. II. Решение логических задач табличным способом

Способ основан на том, что любую систему линейных уравнений можно записать в матричном виде: , где – матрица из коэффициентов при неизвестных, – матрица-столбец из самих неизвестных, – матрица-столбец из свободных членов уравнений.

Рассмотрим для примера систему . Введем матрицы , , . С помощью этих матриц систему можно записать так: . Выполнив действие в левой части равенства и используя условие равенства матриц, придем снова к исходной системе. В матричном виде можно представить и прямоугольные системы, например, систему можно записать так: .

Итак, всякую систему можно записать в виде матричного уравнения . Если матрица в этом уравнении квадратная, то его можно решить по соответствующей формуле: .

Пример. Систему линейных уравнений решить с помощью обратной матрицы.

Выпишем матрицу коэффициентов системы и найдем для неё обратную по общей формуле: . Тогда . Таким образом, . Подстановкой найденных значений во все уравнения системы убеждаемся, что оно верное.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)