АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Решение прямоугольных систем линейных уравнений

Читайте также:
  1. A) к любой экономической системе
  2. A) прогрессивная система налогообложения.
  3. C) Систематическими
  4. CASE-технология создания информационных систем
  5. I СИСТЕМА, ИСТОЧНИКИ, ИСТОРИЧЕСКАЯ ТРАДИЦИЯ РИМСКОГО ПРАВА
  6. I. Основні риси політичної системи України
  7. I. ОСНОВНЫЕ ПОНЯТИЯ (ТЕРМИНЫ) ЭКОЛОГИИ. ЕЕ СИСТЕМНОСТЬ
  8. I. Решение логических задач средствами алгебры логики
  9. I. Суспільство як соціальна система.
  10. I. Формирование системы военной психологии в России.
  11. I.2. Система римского права
  12. II. Решение логических задач табличным способом

Под прямоугольными понимают такие системы линейных уравнений, в которых число уравнений не равно числу неизвестных. Число уравнений может превышать число неизвестных, а может быть меньше его. Если в системе число уравнений превышает число неизвестных то возможны два случая. Первый: часть уравнений является следствием других уравнений, их можно отбросить, система станет или квадратной или число уравнений в ней будет меньше числа неизвестных. Второй: часть уравнений противоречит другим уравнениям, такая система несовместна, не имеет решения. Решение квадратных систем линейных уравнений подробно рассматривалось, поэтому рассмотрим решение систем, в которых число уравнений меньше числа неизвестных.

К составлению подобных систем приводит математическое моделирование многих экономических задач. Решение прямоугольных систем имеет свои особенности. В квадратных системах, т.е. системах, в которых число уравнений равно числу неизвестных, решением является единственный набор числовых значений неизвестных, обращающих все уравнения системы в тождества. В прямоугольных системах решение получается в виде соотношений между одними неизвестными, называемыми базисными, и другими, называемыми свободными. Поскольку свободные переменные могут принимать любые значения, а базисные переменные меняются в зависимости от них, то, по сути, прямоугольные системы имеют бесконечное множество числовых решений.

Рассмотрим пример. Найти решение системы линейных уравнений

при различных способах выбора базиса.

Выберем в качестве базисных неизвестные . Оставим их в левой части уравнений, а неизвестную перенесем в правую часть.

Эту систему можно решать как квадратную, например, методом Гаусса. Чтобы исключить из второго и третьего уравнений системы, прибавим ко второму первое, умноженное на 2, а к третьему - первое, умноженное на 4.

Чтобы исключить из третьего уравнения, прибавим к нему второе, умноженное на (-9).

Разделим обе части третьего уравнения на (-17) и найдем . Из второго уравнения найдем . Из первого уравнения

.

Итак, решение системы при первом способе выбора базиса:

Для проверки найденное решение подставим во все уравнения исходной системы.

Раскрывая скобки и приводя подобные, убеждаемся, что все уравнения системы обращаются в тождества.

Выберем теперь в качестве базисных переменные . Перенесем в левую, a - в правую часть полученного решения.

Запишем полученную систему в матричном виде:

Ее решение , т.к. матрица А отличается от единичной одним столбцом, то обратная для нее находится легко по правилу, сформулированному в параграфе 2.2 раздела I:

Поэтому

Сделав проверку, выпишем вид решения при втором способе выбора базиса:

Чтобы найти вид решения при базисных переменных перепишем найденное решение так:

или .

Решая аналогично предыдущему шагу, находим

Наконец, выбираем в качестве базисных неизвестные .

Преобразуем предыдущее решение:

.

Решая выписанное матричное уравнение, найдем


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)