АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Понятие о биогеохимических циклах, ц.углерода, азота, фосфора, серы

Читайте также:
  1. Apгументация как логико-коммуникативный процесс. Понятие научной аргументации.
  2. I. Понятие и значение охраны труда
  3. I. Понятие общества.
  4. II. ОСНОВНОЕ ПОНЯТИЕ ИНФОРМАТИКИ – ИНФОРМАЦИЯ
  5. II. Понятие социального действования
  6. MathCad: понятие массива, создание векторов и матриц.
  7. А. Понятие жилищного права
  8. А. Понятие и общая характеристика рентных договоров
  9. А. Понятие и признаки подряда
  10. А. Понятие и элементы договора возмездного оказания услуг
  11. А. Понятие и элементы комиссии
  12. А. Понятие и элементы простого товарищества

Взаимодействие абиотических факторов и живых организмов экосистемы сопровождается непрерывным круговоротом вещества между биотопом и биоценозом в виде чередующихся то органических, то минеральных соединений. Обмен химических элементов между живыми организмами и неорганической средой, различные стадии которого происходят внутри экосистемы, называют биогеохимическим круговоротом, или биогеохимическим циклом.

Существование подобных круговоротов создает возможность для саморегуляции (гомеостаза) системы, что придает экосистеме устойчивость: удивительное постоянство процентного содержания различных элементов. Здесь действует принцип функционирования экосистем: получение ресурсов и избавление от отходов происходят в рамках круговорота всех элементов.

Круговорот углерода. Из всех биогеохимических циклов круговорот углерода, без сомнения, самый интенсивный. С высокой скоростью углерод циркулирует между различными неорганическими средствами и через посредство пищевых сетей внутри сообществ живых организмов.

В круговороте углерода определенную роль играют СО и СО2. Часто в биосфере Земли углерод представлен наиболее подвижной формой СО2. Источником первичной углекислоты биосферы является вулканическая деятельность, связанная вековой дегазацией мантии и нижних горизонтов земной коры.

Миграция СО2 в биосфере протекает двумя путями.

Первый путь заключается в поглощении его в процессе фотосинтеза с образованием глюкозы и других органических веществ, из которых построены все растительные ткани. В дальнейшем они переносятся по пищевым цепям и образуют ткани всех остальных живых существ экосистемы. Следует заметить, что вероятность отдельно взятого углерода «побывать» в течение одного цикла в составе многих организмов мала, потому что при каждом переходе с одного трофического уровня на другой велика возможность, что содержащая его органическая молекула будет расщеплена в процессе клеточного дыхания для получения энергии. Атомы углерода при этом вновь поступают в окружающую среду в составе углекислого газа, таким образом завершив один цикл и приготовившись начать следующий. В пределах суши, где имеется растительность, углекислый газ атмосферы в процессе фотосинтеза поглощается в дневное время. В ночное время часть его выделяется растениями во внешнюю среду. С гибелью растений и животных на поверхности происходит окисление органических веществ с образованием СО2.

Атомы углерода возвращаются в атмосферу и при сжигании органического вещества. Важная и интересная особенность круговорота углерода состоит в том, что в далекие геологические эпохи, сотни миллионов лет назад, значительная часть органического вещества, созданного в процессах фотосинтеза, не использовалась ни консументами, ни редуцентами, а накапливалась в литосфере в виде ископаемого топлива; нефти, угля, горючих сланцев, торфа и др. Это ископаемое топливо добывается в огромных количествах для обеспечения энергетических потребностей нашего индустриального общества. Сжигая его, мы в определенном смысле завершаем круговорот углерода.

По второму пути миграция углерода осуществляется созданием карбонатной системы в различных водоемах, где СО2 переходит в Н2СО3, НСО13, СО23. С помощью растворенного в воде кальция (или магния) происходит осаждение карбонатов (СаСО3) биогенным и абиогенным путями. Образуются мощные толщи известняков. По А. Б. Ронову, отношение захороненного углерода в продуктах фотосинтеза к углероду в карбонатных породах составляет 1:4. Существует наряду с большим круговоротом углерода и ряд малых его круговоротов на поверхности суши и в океане.

В целом же без антропогенного вмешательства содержание углерода в биогеохимических резервуарах: биосфере (биомасса+почва и детрит), осадочных породах, атмосфере и гидросфере, — сохраняется с высокой степенью постоянства. По Т.А. Акимовой, В.В. Хаскину (1994), постоянный обмен углеродом, с одной стороны, между биосферой, а с другой — между атмосферой и гидросферой, обусловлен газовой функцией живого вещества — процессами фотосинтеза, дыхания и деструкции, и составляет около 6×1010 т/год. Существует поступление углерода в атмосферу и гидросферу и при вулканической деятельности в среднем 4,5×106 т/год. Общая масса углерода в ископаемом топливе (нефть, газ, уголь и др.) оценивается в 3,2×1015 т, что соответствует средней скорости накопления 7 млн т/год. Это количество по сравнению с массой циркулирующего углерода незначительное и как бы выпадало из круговорота, терялось в нем. Отсюда степень разомкнутости (несовершенства) круговорота составляет 10-4, или 0,01%, а соответственно степень замкнутости — 99,99%. Это означает, с одной стороны, что каждый атом углерода принимал участие в цикле десятки тысяч раз, прежде чем выпал из круговорота, оказался в недрах. А с другой стороны — потоки синтеза и распада органических веществ в биосфере с очень высокой точностью подогнаны друг к другу.

В. Г. Горшковым (1988) на основе расчетов делается важное заключение: «Потоки синтеза и разложение органических веществ совпадают с точностью 10"4 и скоррелированы с точностью 10-4. Скоррелированность потоков синтеза и распада с указанной точностью доказывает наличие биологической регуляции окружающей среды, ибо случайная связь величин с такой точностью в течение миллионов лет невероятна».

В постоянном круговороте находится 0,2% мобильного запаса углерода. Углерод биомассы обновляется за 12, атмосферы — за восемь лет. Огромный контраст между краткостью данных периодов, постоянством и возрастом биосферы подтверждает высочайшую сбалансированность «мира углерода».

Круговорот азота. Азот — незаменимый биогенный элемент, так как он входит в состав белков и нуклеиновых кислот. Круговорот азота один из самых сложных, поскольку включает как газовую, так и минеральную фазу, и одновременно самых идеальных круговоротов.

Круговорот азота тесно связан с круговоротом углерода. Как правило, азот следует за углеродом, вместе с которым он участвует в образовании всех протеиновых веществ.

Атмосферный воздух, содержащий 78% азота, является неисчерпаемым резервуаром. Однако основная часть живых организмов не может непосредственно использовать этот азот. Он должен быть предварительно связан в виде химических соединений. Например, для усвоения азота растениями необходимо, чтобы он входил в состав ионов аммония (NH4+) или нитрата (NO3-).

Газообразный азот непрерывно поступает в атмосферу в результате работы денитрофицирующих бактерий, а бактерии-фиксаторы вместе с сине-зелеными водорослями (цианофитами) постоянно поглощают его, преобразуя в нитраты.

Важную роль в превращении газообразного азота в аммонийную форму в ходе так называемой азотофиксации играют бактерии из рода Rhizobium, живущие в клубеньках на корнях бобовых растений. Растения обеспечивают бактерий местообитанием и пищей (сахара), получая взамен от них доступную форму азота. По пищевым цепям органический (входящий в состав органических молекул) азот передается от бобовых другим организмам экосистемы. В процессе клеточного дыхания белки и другие содержащие азот органические соединения расщепляются, азот выделяется в среду большей частью в аммонийной форме (NH4+). Некоторые бактерии способны переводить ее и в нитратную (NO3-) форму. Отметим, что обе эти формы азота усваиваются любыми растениями. Азот, таким образом, совершает круговорот как минеральный биоген. Однако такая минерализация обратима, так как почвенные бактерии постоянно превращают нитраты снова в газообразный азот.

В водной среде также существуют различные виды нитрофиоцирующих бактерий, но главная роль в фиксации атмосферного азота здесь принадлежит многочисленным видам способных к фотосинтезу сине-зеленых водорослей из родов Anabaena, Nostoc, Frichodesmium и др.

Круговорот азота четко прослеживается и на уровне деструкторов. Протеины и другие формы органического азота, содержащиеся в растениях и животных после их гибели, подвергаются воздействию гетеротрофных бактерий, актиномицетов, грибов (биоредуцирующих микроорганизмов), которые вырабатывают необходимую им энергию восстановлением этого органического азота, преобразуя его таким образом в аммиак.

В почвах происходит процесс нитрификации, состоящий из цепи реакций, где при участии микроорганизмов осуществляется окисление иона аммония (МН4+) до нитрита (NO2-) или нитрита до нитрата (NО3-). Восстановление нитритов и нитратов до газообразных соединений молекулярного азота (N2) или окиси азота (N2O) составляет сущность процесса денитрификации.

Образование нитратов неорганическим путем в небольших количествах постоянно происходит и в атмосфере: путем связывания атмосферного азота с кислородом в процессе электрических разрядов во время гроз, а затем выпадением с дождями на поверхность почвы.

Еще одним источником атмосферного азота являются вулканы, компенсирующие потери азота, выключенного из круговорота при седиментации или осаждении его на дно океанов.

В целом же среднее поступление нитратного азота абиотического происхождения при осаждении из атмосферы в почву не превышает 10 кг (год/га), свободные бактерии дают 25 кг (год/га), в то время как симбиоз Rhizobium с бобовыми растениями в среднем продуцирует 200 кг (год/га). Преобладающая часть связанного азота перерабатывается денитрифицирующими бактериями в N и вновь возвращается в атмосферу. Лишь около 10% аммонифицированного и нитрифицированного азота поглощается из почвы высшими растениями и оказывается в распоряжении многоклеточных представителей биоценозов.

 

Круговорот фосфора. Круговорот фосфора в биосфере связан с процессами обмена веществ в растениях и животных. Этот важный и необходимый элемент протоплазмы, содержащийся в наземных растениях и водорослях 0,01—0,1%, животных от 0,1% до нескольких процентов, циркулирует, постепенно переходя из органических соединений в фосфаты, которые снова могут использоваться растениями.

Однако фосфор в отличие от других биофильных элементов в процессе миграции не образует газовой формы. Резервуаром фосфора является не атмосфера, как у азота, а минеральная часть литосферы. Основными источниками неорганического фосфора являются изверженные породы (апатиты) или осадочные породы (фосфориты). Из пород неорганический фосфор вовлекается в циркуляцию выщелачиванием и растворением в континентальных водах. Попадая в экосистемы суши, почву, фосфор поглощается растениями из водного раствора в виде неорганического фосфат-иона (РО43-) и включается в состав различных органических соединений, где он выступает в форме органического фосфата. По пищевым цепям фосфор переходит от растений к другим организмам экосистемы. Химически связанный фосфор попадает с остатками растений и животных в почву, где вновь подвергается воздействию микроорганизмов и превращается в минеральные ортофосфаты, а в дальнейшем происходит повторение цикла.

В водные экосистемы фосфор переносится текучими водами. Реки непрерывно обогащают фосфатами океаны. В соленых морских водах фосфор переходит в состав фитопланктона, служащего пищей другим организмам моря, в последующем накапливаясь в тканях морских животных, например рыб. Часть соединений фосфора мигрирует в пределах небольших глубин, потребляясь организмами, другая часть теряется на больших глубинах. Отмершие остатки организмов приводят к накоплению фосфора на разных глубинах. Отсюда следует, что фосфор, попадая в водоемы тем или иным путем, насыщает, а нередко и перенасыщает их экосистемы. Частичный возврат фосфатов на сушу связан с поднятием земной коры выше уровня моря. Определенное количество фосфора переносится на сушу морскими птицами, а также благодаря рыболовству. Птицы отлагают фосфор на отдельных островах в виде гуано.

При рассмотрении круговорота фосфора в масштабе биосферы за сравнительно короткий период можно отметить, что он полностью не замкнут. Механизм возвращения фосфора из океанов на сушу в естественных условиях совершенно не способен компенсировать потери этого элемента на седиментацию.

Круговорот серы. Существуют многочисленные газообразные соединения серы, такие, как сероводород H-S и сернистый ангидрид SO2. Однако преобладающая часть круговорота этого элемента имеет осадочную природу и происходит в почве и воде.

Основной источник серы, доступный живым организмам, — сульфаты (SO4,). Доступ неорганической серы в экосистеме облегчает хорошая растворимость многих сульфатов в воде. Растения, поглощая сульфаты, восстанавливают их и вырабатывают серосодержащие аминокислоты (метионин, цистеин, цистин), играющие важную роль в выработке третичной структуры протеинов при формировании дисульфидных мостиков между различными зонами полипептидной цепи.

Здесь хорошо просматриваются многие основные черты биогеохимического круговорота.

1. Обширный резервный фонд в почве и отложениях, меньший в атмосфере.

2. Ключевую роль в быстро обменивающемся фонде играют специализированные микроорганизмы, выполняющие определенные реакции окисления или восстановления. Благодаря процессам окисления и восстановления происходит обмен серы между доступными сульфатами (SO4) и сульфидами железа, находящимися глубоко в почве и осадках. Специализированные микроорганизмы выполняют реакции: H2S ® S ® SO4 — бесцветные, зеленые и пурпурные серобактерии; SO4 ® H2S (анаэробное восстановление сульфата) — Desulfovibrio; H2S ® SO4 (аэробное окисление сульфида) — тиобациллы; органическая S в SO4 и H2S — аэробные и анаэробные гетеротрофные микроорганизмы соответственно. Первичная продукция обеспечивает включение сульфата в органическое вещество, а экскреция животными служит путем возвращения сульфата в круговорот.

3. Микробная регенерация из глубоководных отложений, приводящая к движению вверх газовой фазы H2S.

4. Взаимодействие геохимических и метеорологических процессов — эрозия, осадкообразование, выщелачивание, дождь, абсорбация-десорбция и др. — с такими биологическими процессами, как продукция и разложение.

5. Взаимодействие воздуха, воды и почвы в регуляции кругом ворота в глобальном масштабе.

В целом экосистеме по сравнению с азотом и фосфором требуется меньше серы. Отсюда сера реже является лимитирующим фактором для растений и животных. Вместе с тем круговорот серы относится к ключевым в общем процессе продукции и разложения биомассы. К примеру, при образовании в осадках сульфидов железа фосфор из нерастворимой формы переводится в растворимую и становится доступным для организмов. Это подтверждение того, как один круговорот регулируется другим.

 

 

52-55 Рацион.использование и охрана зем, водн, мин, биол.ресурсов

Особенности охраны чистоты, водных ресурсов, почвы, растительного и животного мира

Для предотвращения загрязнения атмосферного воздуха и водных объектов отходами промышленных предприятий активно разрабатываются и внедряются разнообразные очистные сооружения.

Для очистки воздуха используются фильтры, абсорберы, скрубберы и другие аппараты и установки.

Фильтры бывают:

1) механические;

2) электрические;

3) магнитные;

4) звуковые.

Очистка промышленных и хозяйственно-бытовых Сточных вод осуществляется различными методами:

1) механическими;

2) биологическими;

3) физико-химическими.

Экологические принципы рационального использования природных ресурсов и охраны природы

Постоянный рост населения планеты сопровождается бурным ростом использования всех видов природных ресурсов.

Под влиянием хозяйственной деятельности человека природные ресурсы истощаются. Охрана природы и рациональное использование природных ресурсов призваны решать эту проблему.

Охрана ресурсов в процессе их использования - это основной Принцип охраны природы.

«Все связано со всем» - гласит закон Б. Коммонера. Поэтому охрана одного природного объекта

означает охрану объектов, связанных с ним.Организация охраны природы должна осуществляться одновременно с рациональным природопользованием в двух направлениях:

1) минимизация вредных последствий производственной деятельности;

2) стимулирование нормального функционирования биосферы планеты.

Важными Принципами рационального использования природных ресурсов являются:

1) изучение ресурсов. Грамотное и бережное использование ресурсов невозможно без наличия сведений об их объеме, качестве, без прогноза последствий их изъятия из природных объектов и возможности замены их на другие;

2) организация мониторинга состояния природных ресурсов;

3) совершенствование технологий добычи, транспортировки и переработки ресурсов, предусматривающее их максимальное использование. Проектирование, строительство новых, а также модернизация уже имеющихся производств с целью сокращения использования природных ресурсов. Использование альтернативных источников энергии;

4) повышение урожайности в сельском хозяйстве на освоенных территориях, строгое соблюдение норм и назначения при использовании минеральных удобрений и пестицидов;

5) постоянный поиск новейших природоохранных технологий с обязательным проведением экологической экспертизы;

6) сокращение образования отходов производства - сточных вод, выбросов в атмосферу и твердых отходов.

Использование отходов в качестве сырья для получения энергии и продукции;

7) восстановление природных объектов после техногенного воздействия - рекультивация земель,

защита от эрозии почв, воспроизводство лесов и организация борьбы с лесными пожарами т. п.;

8) сохранение биологического разнообразия планеты.

Организация заповедных зон, заказников, национальных парков. Сокращение отлова промысловых и морских беспозвоночных. Охрана и разведение редких видов растений и животных;

9) открытая демонстрация результатов природоохранной деятельности. Экологическое просвещение населения;

10) совершенствование природоохранного законодательства стран и создание эффективных механизмов его реализации.

Изыскательские работы, добыча полезных ископаемых, их переработка, строительство предприятий и прокладка магистралей всех видов наземного транспорта вызывают изменения почвенного покрова и нарушение гидрологического режима, а также образование техногенного ландшафта.

Рекультивация - искусственное восстановление плодородия почв и растительного покрова.

Различают техническую и биологическую рекультивации.

При технической рекультивации производятся планировка поверхности отвалов, террас, приведение в устойчивое состояние откосов и отвалов, при необходимости применяется химическая мелиорация - известкование почв, гипсование. Рекультивируемые площади покрываются слоем плодородной почвы, которая была снята в начале эксплуатации участка земли и хранилась до окончания работ.

 

При загрязнении почв в результате техногенных аварий и природных катастроф, разрывов трубопроводов и разливов сырья либо химических веществ выполняют комплекс мероприятий. Локализуют загрязнение, по возможности удаляя, нейтрализуя и снижая объемы его вредного воздействия. Эта работа сопровождается применением механических и физико-химических методов.

После технической рекультивации осуществляют биологическую рекультивацию. Она заключается в восстановлении и повышении плодородия почв посредством проведения специальных агротехнических и фитомелиоративных мероприятий. Биологическая рекультивация направлена на возобновление обитания в почве животных, растений, грибов и микроорганизмов.

Очень важным условием проведения любого вида рекультивации является научный подход к проведению восстановительных работ. Анализ исходного состояния почвы служит основой для точного выбора:

1) механических способов обработки - вспашки, рыхления, дискования;

2) количества и видов удобрений;

3) объема и режима полива;

4) внесения структуратора для улучшения состояния газо-воздушной среды.

Заключительным этапом рекультивации является высев трав, который должен выполняться с учетом научных исследований и выбором видов растений, способных расти в данных условиях и обеспечиватьразвитие микрофлоры почвы. Окончательное восстановление почв занимает несколько лет

Рекультивация может иметь значение:

1) сельскохозяйственное - с последующим использованием для получения сельскохозяйственной продукции;

2) водохозяйственное - восстановление береговых зон, предотвращение осушения болот;

3) лесохозяйственное - посадка лесных насаждений;

4) рекреационное - использование крупных выемок для создания искусственных водоемов, рекреационных зон.

Комплекс мероприятий по охране рационального использования земельных ресурсов разрабатывается в территориальных комплексных схемах (программах) развития сельского хозяйства и охраны земельных ресурсов органами сельхозуправления и охраны окружающей среды на перспективу 10-15 лет и внедряется по годовым программам Программы учитывают социально-экономические особенности регионов, содержащие обоснованные предложения относительно использования земельных, водных и других природных ресурсов в связи с комплексом природоохранных средств. В первую очередь в комплексных схемах находит отражение систем а правовых, организационных, экономических и других мероприятий, направленных на предотвращение необоснованного изъятия земель из сельскохозяйственного оборота, защиту от вредных антропогенных воздействий, е дтворення плодородия фунтов, продуктивности земель лесного фонда, защита почв от водной и ветровой эрозии тощщо.

Охрана и рациональное использование земельных ресурсов включает следующие мероприятия:

- организация территории землепользования;

- сохранение и повышение плодородия почв, а также улучшение других полезных свойств земли;

- рекультивация нарушенных земель, мероприятия по повышению их плодородия и улучшения других полезных свойств земли;

 

- снятие, использование и хранение плодородного слоя почвы при выполнении работ, связанных с нарушением земель;

- защиту от зарастания сельскохозяйственных угодий кустарниками и мелколесьем, предубеждения процессов ухудшения культурно-технического состояния земель;

- защита земель от водной и ветровой эрозии, селей, подтопления, заболачивания, вторичного засоления, иссушения, уплотнения, загрязнения отходами производства, химическими и радиоактивными веществами от других процессов разрушения

- временная консервация деградированных сельскохозяйственных угодий (если иначе невозможно восстановить плодородие почв)

Ежегодно из недр земли извлекается 100 млрд тонн минеральных ресурсов, включая топливные, из которых 90 млрд тонн превращается в отходы. Поэтому ресурсосбережение и снижение уровня загрязнения окружающей среды – две стороны одной медали. Например, при производстве 1 тонны меди остается 110 тонн отходов, изготовление одного золотого обручального кольца – 1,5 - 3 тонны отходов и т.д. Если в начале XX века в хозяйстве человека использовалось 20 химических элементов таблицы Менделеева, то сейчас – более 90. За последние 40 лет глобальное потребление минеральных ресурсов возросло в 25 раз, а отходов производства в 10-100 раз больше.

Металл №1 для промышленности – железо. Запасы руд с высоким содержанием железа постепенно исчерпываются, а потребность человечества в железе за вторую половину XX века увеличилась в десятки раз. Появились новые технологии, позволяющие извлекать этот металл из бедных руд.

Другой важный металл – медь. Если в начале столетия для переработки использовались руда, в которых содержание меди было не менее 3%, то сегодня – даже 0,5% этого металла. Медь нужна электропромышленности и автомобилестроению, поэтому в течение столетия производство меди возросло в 22 раза, а количество отходов не меньше чем в 50 раз.

США экологи называют материальным чудовищем. В течение жизни на одного американца расходуется 15 тонн железа и чугуна, 1,5 тонн алюминия, 700 кг меди, 12 тонн глины, 13 тонн поверенной соли, 500 тонн стройматериалов, в том числе 100 м3 древесины. В Японии на одного жителя приходится 50 тонн минерального сырья. Если все страны начнут потреблять столько же ресурсов, сколько США, то человечеству потребовалась бы площадь, равная 3 площадям Земли. Запасы минерального сырья на планете ограничены и быстро истощаются. Разные виды ресурсов могут быть исчерпаны в ближайшие 30-50 лет.

Возможно, в ближайшие 20-30 лет будут исчерпаны запасы свинцовых и цинковых руд, олова, золота, серебра, платины, асбеста, а затем прекратится добыча никеля, кобальта, алюминия и других. Запасы фосфорного сырья истощаются на глазах.

Достаточно скоро цены на фосфорные удобрения, производимые из наземного сырья, резко повысятся. А затем фосфор придется поднимать с морских глубин, который попадает туда из горных пород, через поля, на которые они выносятся как удобрение, затем с бытовыми стоками в море. И этот "золотой" фосфор будет использоваться в сельском хозяйстве.

56. Концепция уст.развития.

Устойчивое развитие

1798г.Т.Мальтус - предел роста численности людей.

1970г."Римский клуб" доклады проф.Дж.Форестере

"Мирные динамики"(ральнейшее развитие чел-ва столкнется

с ограниченностью природных ресурсов)

1772г доклад"пределы роста"

72г.Стокгольм-Всемирн.конференция по окруж.среде.

 

Декларация, 26 принципов,все страны скорректировали

свои планы в соответствии с ними.

Создается в структуре ООН-программа по окруж.среде(ЮНЕП)

Всемирная стратегия охраны природы(ВСОП)

1979г.Ашхабад. Обсуждения

1980г.приняли,забота о планете Земля-стратегия устойчивости жизни.

В 1980-х годах стали говорить об экоразвитии, развитии без разрушения,

необходимости устойчивого развития экосистем. Всемирная стратегия охраны природы,

принятая в 1980, впервые в международном документе содержала упоминание устойчивого развития.

Вторая редакция ВСОП получила название «Забота о планете Земля — Стратегия устойчивой жизни»

и была опубликована в октябре 1991. В ней подчеркивается, что развитие должно базироваться

на сохранении живой природы, защите структуры, функций и разнообразия природных систем Земли,

от которых зависят биологические виды. Для этого необходимо: сохранять системы поддержки

жизни (жизнеобеспечения), сохранять биоразнообразие и обеспечить устойчивое использование

возобновляемых ресурсов. Появились исследования по экологической безопасности как части

национальной и глобальной безопасности.

В 1980-е годы Программа ООН по окружающей среде (ЮНЕП) призывала к необходимости перехода к

«развитию без разрушения». В 1980 году впервые получила широкую огласку концепция устойчивого

развития во Всемирной стратегии сохранения природы, разработанной по инициативе ЮНЕП,

Международного союза охраны природы (МСОП) и Всемирного фонда дикой природы.

В 1987 году в докладе «Наше общее будущее» Международная комиссия по окружающей среде и

развитию (МКОСР) уделила основное внимание необходимости «устойчивого развития», при котором «удовлетворение потребностей настоящего времени не подрывает способность будущих поколений удовлетворять свои собственные потребности». Эта формулировка понятия «устойчивое развитие» сейчас широко используется в качестве базовой во многих странах.

Теория и практика показали, что экологическая составляющая является неотъемлемой частью

человеческого развития. В основе деятельности Международной комиссии по окружающей среде

и развитию и её заключительного доклада «Наше общее будущее» была положена новая триединая концепция устойчивого (эколого-социально-экономического) развития. Всемирный саммит ООН по устойчивому развитию (межправительственный, неправительственный и научный форум) в 2002 году подтвердил приверженность всего мирового сообщества идеям устойчивого развития для долгосрочного удовлетворения основных человеческих потребностей при сохранении систем жизнеобеспечения планеты Земля.

Концепция устойчивого развития во многом перекликается с концепцией ноосферы, выдвинутой академиком В. И. Вернадским ещё в середине XX века.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.019 сек.)