|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
График квадратичной, кубической функции, график многочленаПарабола. График квадратичной функции () представляет собой параболу. Рассмотрим знаменитый случай: Вспоминаем некоторые свойства функции . Область определения – любое действительное число (любое значение «икс»). Что это значит? Какую бы точку на оси мы не выбрали – для каждого «икс» существует точка параболы. Математически это записывается так: . Область определения любой функции стандартно обозначается через или . Буква обозначает множество действительных чисел или, проще говоря, «любое икс» (когда работа оформляется в тетради, пишут не фигурную букву , а жирную букву R). Область значений – это множество всех значений, которые может принимать переменная «игрек». В данном случае: – множество всех положительных значений, включая ноль. Область значений стандартно обозначается через или . Функция является чётной. Если функция является чётной, то ее график симметричен относительно оси . Это очень полезное свойство, которое заметно упрощает построение графика, в чём мы скоро убедимся. Аналитически чётность функции выражается условием . Как проверить любую функцию на чётность? Нужно вместо подставить в уравнение . В случае с параболой проверка выглядит так: , значит, функция является четной. Функция не ограничена сверху. Аналитически свойство записывается так: . Пример 2 Построить график функции . Я рассмотрю важный технический вопрос: Как быстро построить параболу? В практических заданиях необходимость начертить параболу возникает очень часто. Я предлагаю следующий алгоритм построения. Сначала находим вершину параболы. Для этого берём первую производную и приравниваем ее к нулю: Итак, решение нашего уравнения: – именно в этой точке и находится вершина параболы.. А пока рассчитываем соответствующее значение «игрек»: Таким образом, вершина находится в точке Теперь находим другие точки, при этом нагло пользуемся симметричностью параболы. Следует заметить, что функция – не является чётной, но, тем не менее, симметричность параболы никто не отменял. В каком порядке находить остальные точки, думаю, будет понятно из итоговой таблицы:
Выполним чертеж: Для квадратичной функции () справедливо следующее: Если , то ветви параболы направлены вверх. Если , то ветви параболы направлены вниз. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |