|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Метод Ньютона (касательных)Пусть корень уравнения f(x) = 0 отделен на отрезке Алгоритм приближенного вычисления корня методом касательных. Исходные данные: f(x) – функция; f‘(x) – производная заданной функции f(x); ε – требуемая точность; x0 – начальное приближение. Результат: xпр. – приближенный корень уравнения f(x) = 0. Метод решения: Рассмотрим случай, когда Проведем касательную к кривой y =f(x) в точке В0(b; f(b)). В курсе алгебры выводится уравнение касательной. Уравнение касательной в точке В0 имеет вид
Получаем рекуррентную формулу вычисления приближений к корню:
Рисунок 3. Геометрическая интерпретация метода касательных для случая
Обратим внимание, что в этом случае в качестве начального приближения к корню выбираем точку x0 = b. Приближение к коню происходит с правой стороны, поэтому получаем приближенное значение корня с избытком. Пусть теперь
Рисунок 4. Геометрическая интерпретация метода касательных для случая
Если снова провести касательную к кривой в точке В0, то она пересечет ось Ох в точке не принадлежащей отрезку Получаем рекуррентную формулу вычисления приближений к корню, аналогичную первому случаю:
В данном случае в качестве начального приближения к корню выбираем точку x0 = a. Приближение к коню происходит с левой стороны, поэтому находим приближенное значение корня с недостатком. Заметим, что вычислительные формулы метода отличаются друг от друга только выбором начального приближения: в первом случае за x0 принимаем конец b отрезка, во втором – конец a. Убедитесь сами, что при выборе начального приближения корня можно руководствоваться правилом: за исходную точку следует выбрать тот конец отрезка Условие окончания вычислительного процесса:
Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (1.616 сек.) |