АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Метод Ньютона (касательных)

Читайте также:
  1. I этап Подготовка к развитию грудобрюшного типа дыхания по традиционной методике
  2. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  3. I. Методические основы
  4. I. Методические основы оценки эффективности инвестиционных проектов
  5. I. Предмет и метод теоретической экономики
  6. I. Что изучает экономика. Предмет и метод экономики.
  7. II. Метод упреждающего вписывания
  8. II. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ВЫПОЛНЕНИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ
  9. II. Методы непрямого остеосинтеза.
  10. II. Проблема источника и метода познания.
  11. II. Рыночные методы.
  12. II. УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА ДИСЦИПЛИНЫ

Пусть корень уравнения f(x) = 0 отделен на отрезке . Необходимым условием сходимости метода является то, что производные и непрерывны и сохраняют постоянные знаки.

Алгоритм приближенного вычисления корня методом касательных.

Исходные данные:

f(x) – функция;

f‘(x) – производная заданной функции f(x);

ε – требуемая точность;

x0 – начальное приближение.

Результат: xпр. – приближенный корень уравнения f(x) = 0.

Метод решения:

Рассмотрим случай, когда , т.е. и имеют одинаковые знаки. Тогда возможны два случая построения кривой на отрезке (рис 3).

Проведем касательную к кривой y =f(x) в точке В0(b; f(b)). В курсе алгебры выводится уравнение касательной.

Уравнение касательной в точке В0 имеет вид . В качестве очередного приближения к корню уравнения берем точку пересечения касательной с осью Оx. Полагая y = 0, найдем . Теперь . Применяя метод еще раз для отрезка , получим

 


.

 

Получаем рекуррентную формулу вычисления приближений к корню:

 

 

Рисунок 3. Геометрическая интерпретация метода касательных для случая .

 

Обратим внимание, что в этом случае в качестве начального приближения к корню выбираем точку x0 = b. Приближение к коню происходит с правой стороны, поэтому получаем приближенное значение корня с избытком.

Пусть теперь , т.е. и имеют разные знаки. Тогда также возможны два случая построения кривой на отрезке (рис 4).

B0
A0

Рисунок 4. Геометрическая интерпретация метода касательных для случая .

 

Если снова провести касательную к кривой в точке В0, то она пересечет ось Ох в точке не принадлежащей отрезку . Поэтому проведем касательную в точке . Ее уравнение . Находим x1, полагая y = 0: . Корень . Применяя метод еще раз для отрезка , получим .

Получаем рекуррентную формулу вычисления приближений к корню, аналогичную первому случаю:

 

 

В данном случае в качестве начального приближения к корню выбираем точку x0 = a. Приближение к коню происходит с левой стороны, поэтому находим приближенное значение корня с недостатком.

Заметим, что вычислительные формулы метода отличаются друг от друга только выбором начального приближения: в первом случае за x0 принимаем конец b отрезка, во втором – конец a.

Убедитесь сами, что при выборе начального приближения корня можно руководствоваться правилом: за исходную точку следует выбрать тот конец отрезка , в котором знак функции совпадает со знаком второй производной (см. рисунки 8,9).

Условие окончания вычислительного процесса: , где ε - заданная точность. Тогда xпр. = xn+1 с точностью ε.

 


1 | 2 | 3 | 4 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)