|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Метод Ньютона (касательных)Пусть корень уравнения f(x) = 0 отделен на отрезке . Необходимым условием сходимости метода является то, что производные и непрерывны и сохраняют постоянные знаки. Алгоритм приближенного вычисления корня методом касательных. Исходные данные: f(x) – функция; f‘(x) – производная заданной функции f(x); ε – требуемая точность; x0 – начальное приближение. Результат: xпр. – приближенный корень уравнения f(x) = 0. Метод решения: Рассмотрим случай, когда , т.е. и имеют одинаковые знаки. Тогда возможны два случая построения кривой на отрезке (рис 3). Проведем касательную к кривой y =f(x) в точке В0(b; f(b)). В курсе алгебры выводится уравнение касательной. Уравнение касательной в точке В0 имеет вид . В качестве очередного приближения к корню уравнения берем точку пересечения касательной с осью Оx. Полагая y = 0, найдем . Теперь . Применяя метод еще раз для отрезка , получим
.
Получаем рекуррентную формулу вычисления приближений к корню:
Рисунок 3. Геометрическая интерпретация метода касательных для случая .
Обратим внимание, что в этом случае в качестве начального приближения к корню выбираем точку x0 = b. Приближение к коню происходит с правой стороны, поэтому получаем приближенное значение корня с избытком. Пусть теперь , т.е. и имеют разные знаки. Тогда также возможны два случая построения кривой на отрезке (рис 4).
Рисунок 4. Геометрическая интерпретация метода касательных для случая .
Если снова провести касательную к кривой в точке В0, то она пересечет ось Ох в точке не принадлежащей отрезку . Поэтому проведем касательную в точке . Ее уравнение . Находим x1, полагая y = 0: . Корень . Применяя метод еще раз для отрезка , получим . Получаем рекуррентную формулу вычисления приближений к корню, аналогичную первому случаю:
В данном случае в качестве начального приближения к корню выбираем точку x0 = a. Приближение к коню происходит с левой стороны, поэтому находим приближенное значение корня с недостатком. Заметим, что вычислительные формулы метода отличаются друг от друга только выбором начального приближения: в первом случае за x0 принимаем конец b отрезка, во втором – конец a. Убедитесь сами, что при выборе начального приближения корня можно руководствоваться правилом: за исходную точку следует выбрать тот конец отрезка , в котором знак функции совпадает со знаком второй производной (см. рисунки 8,9). Условие окончания вычислительного процесса: , где ε - заданная точность. Тогда xпр. = xn+1 с точностью ε.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |