|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Аналитическая геометрия в пространствеПоверхность в пространстве, как правило, можно рассматривать как геометрическое место точек, удовлетворяющих какому-либо условию. Уравнение данной поверхности в прямоугольной системе координат Oxyz называется такое уравнение F(x,y,z)=0 с тремя переменными, которому удовлетворяют координаты каждой точки, лежащей на поверхности, и не удовлетворяют координаты точек, не лежащих на этой поверхности. Переменные x, y, z в уравнении поверхности называются текущими координатами точек поверхности. Уравнение сферы. (x-x0)2+(y-y0)2+(z-z0)2=R2. Уравнение линии в пространстве. Линию в пространстве можно рассматривать как линию пересечения двух поверхностей или как геометрическое место точек, общих двум поверхностям. Если F1(x,y,z)=0 и F2(x,y,z)=0 – уравнения двух поверхностей, определяющих линию L, то координаты точек этой линии удовлетворяют системе двух уравнений с тремя неизветсными: Уравнения системы называются уравнениями линии в пространстве. Параметрическое задание линии: A(x-x0)+B(y-y0)+C(z-z0)=0. Уравнение плоскости, проходящей через данную точку M0(x0;y0;z0) перпендикулярно вектору n=(A;B;C). Вектор n называется нормальным вектором плоскости. Общее уравнение плоскости Ax+By+Cz+D=0. уравнение плоскости, проходящей через три данные точки. Каноническое уравнение прямой. S=(m;n;p) – направляющий вектор прямой L, М0(x0;y0;z0) – точка, лежащая на этой прямой. Параметрическое уравнение прямой. Уравнение прямой в пространстве, проходящей через две точки: (x-x1)/(x2-x1)= (y-y1)/(y2-y1)= (z-z1)/(z2-z1). Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |