АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Умножение матиц

Читайте также:
  1. II. Умножение матрицы на число
  2. III. Умножение вектора на число
  3. V2: ДЕ 5 - Линейные отображения. Умножение матриц
  4. Линейные операции над векторами (сложение, вычитание, умножение на скаляр; свойства линейных операций).
  5. Многочлен имеет степень на один меньше, чем разрядность вектора. Над многочленами вводятся три вида операций: сложение (аналогично «сложению по модулю 2»), умножение, деление.
  6. Пересечение («умножение») классов
  7. Сложение и умножение в O-символике
  8. Сложение матриц и умножение на число
  9. Сложение, вычитание, умножение и деление степенных рядов.
  10. Умножение
  11. Умножение
  12. Умножение вектора на число

Это действие распространяется на так называемые согласованные матрицы.

Определение 17: Матрица А называетсясогласованной с матрицей В, если число столбцов у матрицы А равно числу строк у матрицы В.

Пример 8: и - согласованные

и - несогласованные

и несогласованные

Определение 18: Произведением двух матриц А и В называется такая матрица С, каждый элемент которой равен сумме произведений элементов i строки матрицы А на соответствующие элементы j-го столбца матрицы В.

 

Если матрица А имеет размерность , а матрица В , то .

Пример 9: Умножить матрицы


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)