|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
ДВА СПОСОБА ВЫЧИСЛЕНИЯ РАНГА МАТРИЦЫ
а) Метод окаймляющих миноров
Пусть в матрице найден минор Пример 9. Найти ранг матрицы Выберем минор второго порядка Значит, минор Ясно, что перебирать таким способом миноры в поисках базисного – задача, связанная с большими вычислениями, если размеры матрицы не очень малы. Существует, однако, более простой способ нахождения ранга матрицы – при помощи элементарных преобразований.
б) Метод элементарных преобразований Определение. Элементарными преобразованиями матрицы называют следующие преобразования: 1) умножение строки на число, отличное от нуля; 2) прибавление к одной строке другой строки; 3) перестановку строк; 4) такие же преобразования столбцов. Преобразования 1 и 2 выполняются поэлементно. Комбинируя преобразования первого и второго вида, мы можем к любой строке прибавить линейную комбинацию остальных строк. Теорема. Элементарные преобразования не меняют ранга матрицы. (Без доказательства) Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |