АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ДВА СПОСОБА ВЫЧИСЛЕНИЯ РАНГА МАТРИЦЫ

Читайте также:
  1. I. Определение ранга матрицы
  2. II. Умножение матрицы на число
  3. II. Элементарные преобразования. Эквивалентные матрицы.
  4. IV. ПРИСВОЕНИЕ КВАЛИФИКАЦИОННОГО РАЗРЯДА, КЛАССНОГО ЧИНА, ДИПЛОМАТИЧЕСКОГО РАНГА, ВОИНСКОГО ЗВАНИЯ
  5. SWOT- анализ и составление матрицы.
  6. Адаптивные программы вычисления определенных интегралов
  7. Алгоритм вычисления кодов Шеннона — Фано
  8. Алгоритм вычисления обратной матрицы.
  9. Алгоритм вычисления обратной матрицы.
  10. Алгоритм вычисления произведения
  11. Алгоритм Гаусса вычисления ранга матрицы
  12. Алгоритм нахождения обратной матрицы

 

а) Метод окаймляющих миноров

 

Пусть в матрице найден минор -го порядка, отличный от нуля. Рассмотрим лишь те миноры -го порядка, которые содержат в себе (окаймляют) минор : если все они равны нулю, то ранг матрицы равен . В противном случае среди окаймляющих миноров найдется ненулевой минор -го порядка, и вся процедура повторяется.

Пример 9. Найти ранг матрицы методом окаймляющих миноров.

Выберем минор второго порядка . Существует только один минор третьего порядка, окаймляющий выбранный минор . Вычислим его.

Значит, минор базисный, а ранг матрицы равен его порядку, т.е.

Ясно, что перебирать таким способом миноры в поисках базисного – задача, связанная с большими вычислениями, если размеры матрицы не очень малы. Существует, однако, более простой способ нахождения ранга матрицы – при помощи элементарных преобразований.

 

б) Метод элементарных преобразований

Определение. Элементарными преобразованиями матрицы называют следующие преобразования:

1) умножение строки на число, отличное от нуля;

2) прибавление к одной строке другой строки;

3) перестановку строк;

4) такие же преобразования столбцов.

Преобразования 1 и 2 выполняются поэлементно.

Комбинируя преобразования первого и второго вида, мы можем к любой строке прибавить линейную комбинацию остальных строк.

Теорема. Элементарные преобразования не меняют ранга матрицы.

(Без доказательства)


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)