АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

МАТРИЦЫ

Читайте также:
  1. I. Определение ранга матрицы
  2. II. Умножение матрицы на число
  3. II. Элементарные преобразования. Эквивалентные матрицы.
  4. SWOT- анализ и составление матрицы.
  5. Алгоритм вычисления обратной матрицы.
  6. Алгоритм вычисления обратной матрицы.
  7. Алгоритм Гаусса вычисления ранга матрицы
  8. Алгоритм нахождения обратной матрицы
  9. Алгоритм определения наибольшего по модулю собственного значения и соответствующего собственного вектора матрицы с положительными элементами.
  10. Б) с помощью обратной матрицы.
  11. Базисный минор и ранг матрицы. Теорема о базисном миноре
  12. Билет 21 Квадратичные формы, преобразование матрицы квадратичной формы при переходе к новому базису.

Прямоугольная таблица чисел

,

содержащая строк и столбцов, называется матрицей размеров . Числа называются элементами матрицы. Каждый элемент матрицы снабжен двумя индексами: первый индекс указывает номер строки, второй – номер столбца, в которых расположен этот элемент. Часто вместо подробной записи употребляют сокращенную: или даже . Если число строк матрицы равно числу ее столбцов, то матрица называется квадратной порядка . Диагональ квадратной матрицы называется главной диагональю, а диагональ побочной диагональю.

Среди квадратных матриц одного и того же порядка (например, порядка , т.е. размеров ) важную роль играет матрица вида

,

которую называют единичной матрицей.

Пример 1. Матрица

имеет размеры 3×4, например, элементы , .

Матрица

является квадратной порядка 3. Элементы 5, 4, –3 образуют главную диагональ, а элементы 0, 4, –2 матрицы – побочную диагональ.

Умножение матрицы на число. Для того чтобы умножить матрицу на число , нужно каждый элемент матрицы умножить на это число: .

Сложение матриц. Складывать можно только матрицы с одинаковым числом строк и столбцов, т.е. матрицы одинаковых размеров. Суммой матриц и называется матрица , элементы которой равны суммам соответствующих элементов матриц и , т.е. для любых индексов , .

Умножение матриц. Произведение матрицы на матрицу (обозначается ) определено только в том случае, когда число столбцов матрицы равно числу строк матрицы . В результате умножения получим матрицу , у которой столько же строк, сколько их в матрице , и столько же столбцов, сколько их в матрице . Для удобства запоминания запишем это кратко:

Если , и , то элементы определяются следующим образом:

,

где .

Это правило можно сформулировать и словесно: элемент , стоящий на пересечении -й строки и -го столбца матрицы , равен сумме попарных произведений соответствующих элементов -й строки матрицы и -го столбца матрицы . Другими словами, элемент является результатом скалярного произведения -й вектор-строки и -го вектор-столбца.

Пример 2. Выполнить действия:

.

Пример 3. Перемножить матрицы:

и .

Матрица имеет размерность 2×3, матрица имеет размерность 3×4, значит, матрицы можно перемножить. Размерность матрицы произведения С – 2×4. Чтобы получить первый элемент матрицы С перемножим элементы первой строки матрицы А на соответствующие элементы первого столбца матрицы В. Элементы , , получим умножением элементов первой строки матрицы А на соответствующие элементы второго, третьего, четвертого столбцов матрицы В.

2 3 –1 2 3 –1 2 3 –1 2 3 –1

–5 0 3 3 –2 21 –1 20 3 –4

–10+0– 3= –13 6 – 6 – 2 =–2 2 – 3 – 2= –3 0 + 9 + 4=13.

 

Элементы получим умножением элементов второй строки матрицы А на соответствующие элементы первого, второго, третьего, четвертого столбцов матрицы В.

0 –4 1 0 –4 1 0 –4 1 0 –4 1

–5 0 33 –2 21 –1 20 3 –4

0 – 0 + 3=3 0 + 8 + 2=10 0 + 4 + 2 =6 0 – 12 – 4= –16

Итак, матрица произведения С имеет вид:

.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)