АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вычисление дескрипторов молекулярной структуры. Полная энергия - электронной системы

Читайте также:
  1. I. ОСНОВЫ МОЛЕКУЛЯРНОЙ СТАТИСТИКИ 1 страница
  2. I. ОСНОВЫ МОЛЕКУЛЯРНОЙ СТАТИСТИКИ 2 страница
  3. I. ОСНОВЫ МОЛЕКУЛЯРНОЙ СТАТИСТИКИ 3 страница
  4. I. ОСНОВЫ МОЛЕКУЛЯРНОЙ СТАТИСТИКИ 4 страница
  5. I. ОСНОВЫ МОЛЕКУЛЯРНОЙ СТАТИСТИКИ 5 страница
  6. I. ОСНОВЫ МОЛЕКУЛЯРНОЙ СТАТИСТИКИ 6 страница
  7. I. ОСНОВЫ МОЛЕКУЛЯРНОЙ СТАТИСТИКИ 7 страница
  8. II. ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ
  9. Атомные нарушения структуры кристалла. Классификация дефектов структуры.
  10. Б) Вычисление тригонометрических функций.
  11. Биологическая эволюция, прогресс нашего биологического вида – это снижение примативности, повышение альтруистичности и укрепление парной половой структуры.
  12. Биологическая эволюция, прогресс нашего биологического вида — это снижение примативности, повышение альтруистичности и укрепление парной половой структуры.

Полная энергия - электронной системы. В методе Хюккеля - электронная энергия молекулы равна сумме орбитальных энергий, умноженных на соответствующие числа заполнения электронами молекулярных орбиталей:

учитывая, что:

будем иметь соответственно:

Поскольку:

тогда после подстановки данного выражения в уравнение вида:

а также учитывая, что - полностью заполненная молекулярная орбиталь, будем иметь соответственно:

Энергия диссоциации - связи. Энергия связи является фундаментальной характеристикой молекулярной системы, характеризуя ту энергию, которая необходима для её разрыва (энергия диссоциации). Энергия связи коррелирует с порядком связи. По её значению можно делать выводы относительно прочности химической связи и её длины.


Данный параметр можно вычислить исходя из следующих соображений:

учитывая, что:

будем иметь соответственно:

Используя полученное выше значение - электронной энергии этилена, а также используя уравнение:

рассчитаем энергию диссоциации - связи, имеющей место в этилене.

Энергии ВЗМО и НСМО. Значения этих величин получают путём решения векового детерминанта. Они отвечают соответственно энергиям ионизации (ВЗМО) и сродства к электрону (НСВМ). Как известно в методе Хюккеля (МОХ) оперируют с параметрами и , значения которых значения берётся из эксперимента. Так, значение кулоновского интеграла на основании теоремы Купманса можно оценить по значению энергии ионизации - орбитали и в случае атома водорода . Резонансный интеграл определяет выигрыш в энергии при образовании химической связи. Кулоновские интегралы одинаковы для всех атомов углерода, а резонансные (обменные) интегралы одинаковы для всех углерод – углеродных связей, принимая значение . Используя значения этих интегралов, рассчитаем энергии ионизации и сродства к электрону рассматриваемых сопряжённых молекул. Согласно теореме Купманса, потенциал ионизации есть орбитальная энергия, взятая с обратным знаком. Аналогичная связь имеется также между знаком орбитальной энергии низшей свободной молекулярной орбитали и сродством к электрону, т.е. имеем соответственно:

Таким образом, учитывая, что:

а также:

тогда:

поскольку:

поэтому:


1.2. Бутадиен:

Для рассматриваемой молекулы полиена, имеем определитель 4-го порядка, который можно представить в общем виде:

На основании данных о виде топологической матрицы (или матрицы смежности), передающих информацию о молекулярной структуре полиена, с учётом введенного орбитального параметра :

составим хюккелевский детерминант, порядок которого очевидно будет равен общему числу атомов углерода в молекуле:

Полагая значения диагональных матричных элементов равными и далее, присваивая значения 1 тем недиагональным матричным элементам, которые соответствуют соседним атомам (между которыми имеет место химическая связь) и нуль тем недиагональным матричным элементам, которые отвечают несоседним атомам (между которыми химической связи нет), приходим к выражению вида:

полученный таким образом детерминант приравнивают нулю, т.е. имеем:

Для того чтобы раскрыть полученный в ходе проделанных выше выкладок определитель, используют самые различные подходы. Наиболее простой путь решения детерминанта такого типа является метод, основанный на получении общих решений, предложенный в своё время Ч. Коулсоном. Так, применительно к молекулам линейных полиенов – углеводородов с открытой цепью общей формулы и чередующимися (альтернирующими) двойными и одинарными связями, хюккелевский детерминант как это было показано выше, будет иметь вид:

Понижение порядка детерминанта такого типа, когда число атомов углерода в молекуле полиена , производится по формуле:


имеем:

учитывая, что:

приходим для бутадиена к выражению вида:

откуда следует соответственно, что:

На основании общих решений векового детерминанта, рассчитаем значения орбитальных параметров, энергий и коэффициентов разложения для случая молекулы бутадиена:

здесь - индекс молекулярной орбитали, - индекс атомной орбитали и величина есть число атомов углерода в цепи сопряжения. Поскольку:

тогда после подстановки соответствующих величин, будем иметь:

поскольку:

имеем:

учитывая, что:

имеем:

или после подстановки значений орбитальных параметров:

; ; ;

в уравнение вида:

будем иметь соответственно:

 

На основании рассчитанных значений энергий молекулярных орбиталей соответственно связывающего и разрыхляющего состояний, строим диаграмму энергетических уровней молекулы бутадиена в основном состоянии. В ходе проделанных выше выкладок, приходим к выражениям для энергий связывающего и разрыхляющего состояний бутадиена, полученных в ходе решения хюккелевского детерминанта 4-го порядка . На основании полученных данных, которые для удобства сводим в соответствующую таблицу, строим диаграмму энергетических уровней основного состояния молекулы бутадиена.

Рис. 23. Диаграмма энергетических уровней молекулы

бутадиена (основное состояние)


Таблица 7. Энергии связывающей и разрыхляющей молекулярных орбиталей молекулы бутадиена.

Симметрия МО Орбитальный параметр, Энергия МО, МО,

 


1 | 2 | 3 | 4 | 5 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.)