|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Краткая теория. Цепь, состоящая из конденсатора С и катушки индуктивности L, называется колебательным контуром (рис
Цепь, состоящая из конденсатора С и катушки индуктивности L, называется колебательным контуром (рис. 1). Если конденсатор зарядить и замкнуть ключ К, то через катушку L потечет разрядный ток. Одновременно вкатушке появится э.д.с. индукции, противодействующая нарастанию тока (по закону Ленца). Электрическое поле конденсатора, создаваемое его зарядами, совершает работу против э.д.с. индукции, и в результате электрическая энергия конденсатора будет превращаться в энергию магнитного тока, который возникает в катушке. В момент полной разрядки конденсатора э.д.с. индукции будет равна нулю и вся энергия конденсатора сосредоточится в магнитном поле тока. Далее ток из разрядного превращается в зарядный, конденсатор вновь начинает заряжаться вследствие того, что э.д.с. индукции будет поддерживать уменьшающийся ток. При этом э.д.с. индукции совершает работу против напряжения на конденсаторе – происходит переход энергии магнитного поля катушки в энергию электрического поля конденсатора. В конце этого процесса ток опять станет равным нулю. Конденсатор перезарядится. В следующее мгновение конденсатор опять начнет разряжаться и в контуре появиться ток, но противоположного направления. Процесс снова повторится. Электромагнитные колебания, возникшие в контуре, являются гармоническими. Период таких колебаний выражается формулой Томпсона
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |