|
||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Отделение корней. На данном этапе определяются те интервалы области изменения переменной x, в каждом из которых расположен один и только один корень уравнения (3.1)На данном этапе определяются те интервалы области изменения переменной x, в каждом из которых расположен один и только один корень уравнения (3.1). По сути дела на этом этапе определяются грубые приближения значений x с погрешностью, определяемой длиной каждого найденного интервала. Полностью автоматизировать процесс отделения корней, пожалуй, невозможно, так как в нем обязательно присутствует элемент субъективного, интуитивного подхода к решению задачи. Иногда, например, интервал, в котором расположен корень, удается получить из физической сущности решаемой задачи. При выполнении этого этапа с использованием ЭВМ обычно проводится "табулирование " функции F (x, a 1, a 2,..., a k), т.е. построение таблицы ее значений при различных значениях x, следующих друг за другом с некоторым шагом h:
где x i+1 = x i + h; F i = F (x i); i = 1,2,...,n-1. Например, таблица значений функции x 2 - 12 ln½ x ½ + 6 sin x на промежутке [1,10] c шагом h = 1 имеет вид:
В качестве границ искомых интервалов выбираются такие соседние значения x, в которых соответствующие значения F (x) имеют разные знаки, так как изменение знака функции на некотором интервале означает в силу ее непрерывности, что где-то в пределах этого интервала график функции пересекает ось абсцисс, т.е. уравнение F (x) = 0 имеет корень. В частности, на основании данных из приведенной выше таблицы можно сделать вывод, что уравнение x 2 - 12 ln½ x ½ + 6 sin x = 0 на промежутке [1,10] имеет по крайней мере два корня: в интервале (2,3) и в интервале (5,6).
При выполнении этого этапа нужно проявлять определенную осторожность: во-пеpвых, одинаковые знаки функции F на концах интервала (x i, x i+1) не означают, что на этом интервале нет корней - их может быть, например, два; во-втоpых, при разных знаках на концах интервала здесь может оказаться не один корень, а три или, например, пять. В приводимой на рис.3.1 схеме алгоритма отделения корней использованы следующие обозначения: x Н, x К - соответственно левая и правая границы промежутка табулирования функции F (x); x - текущая точка табулирования; ; В 0, В 1 - знаки функции F (x) соответственно в предыдущей и текущей точках табулирования. В соответствии с данной блок-схемой производится не просто табулирование функции, а, кроме того, анализ знака функции в каждой новой точке и вывод сообщения при его изменении.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |