АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Отделение корней. На данном этапе определяются те интервалы области изменения переменной x, в каждом из которых расположен один и только один корень уравнения (3.1)

Читайте также:
  1. Бесконечно много корней.
  2. В отделение проктологии поступил больной с жалобами на кровотечение из стенок прямой кишки.
  3. Ведение разведки отделением (экипажем БРМ-1к)
  4. Госпитальное отделение
  5. Госпитальное отделение
  6. Дата____________ Структурное подразделение: «Приёмное отделение»
  7. Детей, находящихся в крайне тяжелом состоянии (шок, судороги, массивное кровотечение и т.д.), направляют сразу в реанимационное отделение или палату интенсивной терапии.
  8. Дневное отделение
  9. Дневное отделение
  10. Заготовительное отделение
  11. Заочное отделение
  12. Заочное отделение

На данном этапе определяются те интервалы области изменения переменной x, в каждом из которых расположен один и только один корень уравнения (3.1). По сути дела на этом этапе определяются грубые приближения значений x с погрешностью, определяемой длиной каждого найденного интервала. Пол­ностью автоматизировать процесс отде­ле­­ния корней, пожалуй, невозможно, так как в нем обязательно присутствует элемент су­бъ­ективного, интуитивного подхода к решению задачи. Иногда, например, интервал, в котором расположен корень, удается получить из физической сущности решаемой задачи.

При выполнении этого этапа с использованием ЭВМ обычно проводится "табу­лирование " функции F (x, a 1, a 2,..., a k), т.е. построение таблицы ее значений при различных значе­ниях x, следующих друг за другом с некоторым шагом h:

 

x F (x)
x 1 F 1
x 2 F 2
... ...
x n F n

 

где x i+1 = x i + h; F i = F (x i); i = 1,2,...,n-1.

Например, таблица значений функции x 2 - 12 ln½ x ½ + 6 sin x на промежутке [1,10] c шагом h = 1 имеет вид:

 

x F (x)
1.0 6.05
2.0 0.72
3.0 - 3.99
4.0 - 6.01
5.0 - 1.03
6.0 11.75
7.0 28.42
8.0 43.74
9.0 55.79
10.0 67.72

 

В качестве границ искомых интервалов выбираются такие соседние значения x, в которых соответствующие значения F (x) имеют разные знаки, так как изменение знака функции на некотором интервале означает в силу ее непрерывности, что где-то в пределах этого интервала график функции пересекает ось абсцисс, т.е. уравнение F (x) = 0 име­ет корень. В частности, на основании данных из приведенной выше таблицы можно сде­лать вывод, что уравнение x 2 - 12 ln½ x ½ + 6 sin x = 0 на промежутке [1,10] имеет по край­ней мере два корня: в интервале (2,3) и в интервале (5,6).

Рис.3.1. Алгоритм отделения корней табулированием функции

При выполнении этого этапа нужно проявлять определенную осторожность: во-пеpвых, оди­наковые знаки функции F на концах интервала (x i, x i+1) не означают, что на этом интервале нет корней - их может быть, например, два; во-втоpых, при разных знаках на концах интервала здесь может оказаться не один корень, а три или, например, пять.

В приводимой на рис.3.1 схеме алгоритма отделения корней использованы следующие обозначения:

x Н, x К - соответственно левая и правая границы промежутка табулирования функции F (x);

x - текущая точка табулирования;

;

В 0, В 1 - знаки функции F (x) соответственно в пре­дыдущей и текущей точках табулирования.

В соответствии с данной блок-схемой производится не просто табулирование функции, а, кроме то­­го, анализ знака функции в каждой новой точке и вывод сообщения при его изменении.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)