АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Постановка задачи. Во многих инженерных и научных задачах возникает необходимость решения уравнений вида: F(x, a1

Читайте также:
  1. I Психологические принципы, задачи и функции социальной работы
  2. I. 1.1. Пример разработки модели задачи технического контроля
  3. I. 1.2. Общая постановка задачи линейного программирования
  4. I. 2.1. Графический метод решения задачи ЛП
  5. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  6. I. ЗАДАЧИ ПЕДАГОГИЧЕСКОЙ ПРАКТИКИ
  7. I. Значение и задачи учета. Основные документы от реализации продукции, работ, услуг.
  8. I. Ситуационные задачи и тестовые задания.
  9. I. Цель и задачи дисциплины
  10. I.5.3. Подготовка данных для задачи линейного программирования
  11. I.5.4. Решение задачи линейного программирования
  12. I.5.5. Просмотр и анализ результатов решения задачи

РЕШЕНИЕ ТРАНСЦЕНДЕНТНЫХ УРАВНЕНИЙ

Во многих инженерных и научных задачах возникает необходимость решения уравнений вида:

F (x, a 1, a 2,..., a k) = 0 (3.1)

где F - заданная непрерывная функция;

x – неизвестная величина, подлежащая определению;

a 1, a 2,..., a k – известные параметры функции F.

Решить уравнение (3.1) - это значит найти такое значение (или такие значения) неизвестной x, при которых уравнение (3.1) превращается в тождество. Эти значения x называются корнями уравнения (3.1).

Только для простейших уравнений удается найти решение в аналитическом виде, т.е. записать формулу

x = f (a 1, a 2,..., a k),

выражающую искомую величину x явным образом через параметры a 1, a 2,..., a k, например, для уравнения вида

ax 2 + bx + c = 0

его корни выражаются формулой:

.

В большинстве же случаев аналитическую запись корней уравнения найти очень сло­ж­но или в принципе невозможно (такие уравнения называются трансцендентными), и по­это­му приходится решать уравнение численным способом.

Существует несколько различных методов численного решения трансцендентных уравнений, но все они предполагают выполнение двух этапов: первый из них называется " отделение корней ", второй - " уточнение корней ". Ниже рассматривается один из спосо­бов отделения корней и четыре метода уточнения корней - метод дихотомий, метод хорд, метод касательных и метод простых итераций.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)