АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Метод хорд

Читайте также:
  1. F. Метод, основанный на использовании свойства монотонности показательной функции .
  2. FAST (Методика быстрого анализа решения)
  3. I этап Подготовка к развитию грудобрюшного типа дыхания по традиционной методике
  4. I. 2.1. Графический метод решения задачи ЛП
  5. I. 3.2. Двойственный симплекс-метод.
  6. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  7. I. Метод рассмотрения остатков от деления.
  8. I. Методические основы
  9. I. Методические основы оценки эффективности инвестиционных проектов
  10. I. Организационно-методический раздел
  11. I. Предмет и метод теоретической экономики
  12. I. Что изучает экономика. Предмет и метод экономики.

Пусть так же, как в методе дихотомий, известны две точки A и B (A<B),для которых sign F (A) ¹ sign F (B). В методе хорд (см. рис.3.4), в отличие от метода дихотомий, в ка­чес­тве очередного приближения P берется точка пересечения с осью абсцисс хорды, соединяющей точки (A, F (A)) и (B, F (B)).

 

Рис.3.4. Геометрическая интерпретация метода хорд

Уравнение прямой, проходящей через эти две точки запишем в виде: Y (x) = k x + c.

Коэффициенты k и c определяются из условий:

F (A) = k A + c; F (B) = k B + c.

Решая эту систему из двух уравнений, получим:

; c = F (A) - k A.

Точка P пересечения этой прямой с осью ОX определяется из уравнения

kP + c = 0.

Решая его, окончательно получаем:

. (3.4)

В методе хорд нельзя использовать в качестве критерия окончания вычислительного процесса неравенство (3.3), так как, как видно из рис.3.4, величина B – A не стремится к нулю. В данном методе, как и в рассматриваемых ниже, вычислительный процесс следует прекращать при выполнении неравенства

, (3.5)

т.е. если расстояние между двумя соседними приближениями к корню меньше заранее заданной величины .

Алгоритм метода хорд, следовательно, отличается от алгоритма метода дихотомий формулой вычисления приближения P (вместо (3.2) использется (3.4))и критерием окончания вычислительного процесса (вместо (3.3) использется (3.5)).

Блок-схему для метода хорд предлагается разработать самостоятельно.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)