АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Метод дихотомии. Пусть на этапе отделения корней получены две точки A и B (A<B), между которыми находится корень уравнения (3.1)

Читайте также:
  1. F. Метод, основанный на использовании свойства монотонности показательной функции .
  2. FAST (Методика быстрого анализа решения)
  3. I этап Подготовка к развитию грудобрюшного типа дыхания по традиционной методике
  4. I. 2.1. Графический метод решения задачи ЛП
  5. I. 3.2. Двойственный симплекс-метод.
  6. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  7. I. Метод рассмотрения остатков от деления.
  8. I. Методические основы
  9. I. Методические основы оценки эффективности инвестиционных проектов
  10. I. Организационно-методический раздел
  11. I. Предмет и метод теоретической экономики
  12. I. Что изучает экономика. Предмет и метод экономики.

Пусть на этапе отделения корней получены две точки A и B (A<B), между которыми находится корень уравнения (3.1), т.е. такие точки, в которых знаки значений функ­ции F (x) противоположны (см. рис.3.2): sign F (A) ¹ sign F (B).

Метод дихотомии, называемый еще методом половинного деления, заключается в следующем:

1) определяется середина отрезка [ A, B ]:

;   (3.2)

2) вычисляется значение функции в этой точке - F (P) и его знак sign F (P);

3) корень уравнения (3.1) находится в той половине отрезка [ A, B ], на концах которой функция F (x) имеет разные знаки. Если это будет половинка [ A, P ], то перенесем точку B в точку P; если же половинка [ P, B ], то перенесем точку A в точку P. Благодаря этой операции длина отрезка [ A, B ], на котором находится корень уравнения, уменьшилась вдвое, т.е. можно сказать, что значение корня определено с точностью до длины полученного отрезка.

Каждое новое повторение действий 1,2,3 будет давать все более точные значения корня уравнения. Повторение этого процесса следует прекращать, когда длина отрезка [ A, B ] станет меньше заранее заданного значения , являющегося в данном случае ошиб­кой ограничения, т.е. неравенство

B - A < (3.3)

является критерием окончания вычислительного процесса.

Рис.3.3. Алгоритм метода дихотомии   Если величина задана очень малая, то вблизи корня значения F (x) могут ока­заться сравнимыми с погрешностью ее вычисления, т.е. при подходе к корню вычисли­тельный процесс может попасть в так называемую "полосу шума", и дальнейшее уточне­ние корня окажется невозможным. Поэтому кроме точности надо задавать в алгоритме ширину "полосы шума" 1 и прекращать процесс при попадании в него, т.е. неравенство F(P) | < 1 является дополнительным критерием окончания вычислительного процесса. Схема алгоритма представлена на рис.3.3.       Рис.3.2. Геометрическая интерпретация метода дихотомии

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)