АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Решение с помощью рядов Тейлора

Читайте также:
  1. I. Решение логических задач средствами алгебры логики
  2. I.5.4. Решение задачи линейного программирования
  3. II Формула Тейлора с остаточным членом в форме Пеано
  4. II этап: Решение задачи на ЭВМ в среде MS Excel
  5. II этап: Решение задачи на ЭВМ в среде MS Excel
  6. II этап: Решение задачи на ЭВМ в среде MS Excel
  7. II этап: Решение задачи на ЭВМ средствами пакета Excel
  8. II. Решение логических задач табличным способом
  9. II.1.3. Решение транспортной задачи в QSB
  10. III Формула Тейлора с остаточным членом в форме Лагранжа
  11. III. Разрешение споров в международных организациях.
  12. III. Решение логических задач с помощью рассуждений

Предположим, что нами уже найдено приближенное решение уравнения (7.2) для точек x 0, x 1, x 2,..., x m. При этом последовательные значения x i расположены на расстоянии h друг от друга, т.е. x i+1 = x i + h.

Разложим искомую функцию y (x) в ряд Тейлора в окрестности точки x m:

,

где - значение j -й производной от функции y (x), вычисленное в точке x = xm.

Найдем приближенное значение ym +1 для точки xm +1, подставив в это разложение вместо x величину xm +1:

  (7.3)

Чем больше членов этого ряда мы возьмем для вычисления, тем точнее будет решение.

Из (7.2) имеем: . Дифференцируя обе части (7.2) по x и учитывая, что y есть функция от x, получаем:

или для сокращения записи: , где f x, f y - частные производные от функции по x и y соответственно.

Тогда выражение (7.3) приобретает вид:

  (7.4)

где O (h 3) означает, что в следующие (отброшенные) члены ряда значение h входит в степени не ниже третьей.

Таким образом, если для решения уравнения (7.2) будет использована формула (7.4), то погрешность усечения будет приблизительно равна Ch 3, где C - некоторая постоянная, не зависящая от h.

Решение дифференциального уравнения данным способом является одноступенчатым, так как для вычисления каждого ym +1 требуется информация только об одной предыдущей точке (xm, ym).

С практической точки зрения трудность использования этого метода заключается в необходимости нахождения и вычисления частных производных f x, f y, что в некоторых ситуациях бывает просто невозможно. Кроме того, если попытаться получить лучшее приближение, то необходимо вычислять уже третью производную:

.

Производные более высоких порядков становятся еще более сложными. На практике этот метод не используется, а здесь он приведен как основа для вывода других методов и оценки их погрешностей.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)