|
|||||||||||||||||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Дифференциальных уравнений высоких порядков
Преобразуем дифференциальное уравнение (7.1) n -го порядка к системе n дифференциальных уравнений 1-го порядка
Запись уравнения (7.1) в виде системы (7.16) называется формой Коши. Начальные условия (7.1') при таком преобразовании выглядят так:
Для примера преобразуем к форме Коши уравнение Бесселя:
Обозначим искомую функцию y (x) через z 1(x), а ее первую производную - z 2(x). Тогда получим систему уравнений первого порядка, эквивалентную исходному уравнению:
Вычислительный алгоритм "усовершенствованного" метода Эйлера для задачи Коши (7.16,7.16') выглядит аналогично (7.8):
где i =1,2,..., n; Вычислительный алгоритм "модифицированного" метода Эйлера для задачи Коши (7.16,7.16') выглядит аналогично (7.12):
где i =1,2,..., n; Вычислительная схема метода Рунге-Кутта четвертого порядка для задачи Коши (7.16,7.16') имеет вид:
Аналогичным образом обобщается на случай системы уравнений и схема (7.14) Кутта-Мерсона.
Поиск по сайту: |
||||||||||||||||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.087 сек.) |