|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Уравнения, допускающие понижение порядка
Одним из методов интегрирования ДУ высших порядков является метод понижения порядка. Суть метода состоит в том, что с помощью замены переменной данное ДУ сводится к уравнению, порядок которого ниже.
Рассмотрим 3 типа уравнений, допускающих понижение порядка.
1. Пусть дано уравнение y’’=f(x). Порядок можно понизить, введя новую функцию p(x), положив y’=p(x). Тогда y’’=p’(x) и получаем ДУ первого порядка: p’=f(x). Решив его, т.е. найдя функцию р=р(х), решим уравнение у’=р(х). Получим общее решение заданного уравнения y’’=f(x).
2. Пусть дано уравнение y’’=f(x;y’), не содержащее явно искомой функции у. Обозначим у’=р, где р=р(х) – новая неизвестная функция. Тогда у’’=p’ и уравнение y’’=f(x;y’) принимает вид р’=f(x;p). Пусть р= - общее решениеполученного ДУ первого порядка. Заменяя функцию р на у’, получаем ДУ: y’= . Оно имеет вид y’’=f(x). Для отыскания у достаточно проинтегрировать последнее уравнение. Общее решение уравнения y’’=f(x;y’) будет иметь вид у = . Частным случаем уравнения y’’=f(x;y’) является уравнение y’’=f(y’), не содержащее также и независимую переменную х. Оно интегрируется тем же способом: y’=p(x), y’’=p’= . Получаем уравнение p’=f(p) с разделяющимися переменными.
3. Рассмотрим уравнение y’’=f(y;y’), которое не содержит явно независимой переменной х. Для понижения порядка уравнения введем новую функцию р=р(у), зависящую от переменной у, полагая y’=p. Дифференцируем это равенство по х, учитывая, что р=р(у(х)): , т.е. = . Теперь уравнение y’’=f(y;y’) запишется в виде =f(y;p). Пусть р= является общим решением этого ДУ первого порядка. Заменяя функцию р(у) на y’, получаем y’= - ДУ с разделяющимися переменными. Интегрируя его, находим общий интеграл уравнения y’’=f(y;y’): . Частным случаем уравнения y’’=f(y;y’) является ДУ y’’=f(y). Такое уравнение решается при помощи аналогичной подстановки: y’=p(y), y’’= .
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |