АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Геометрические задачи, приводящие к решению дифференциальных уравнений 1-го порядка

Читайте также:
  1. I Классификация кривых второго порядка
  2. I. Составление дифференциальных уравнений и определение передаточных функций
  3. I.СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. МЕТОД ГАУССА
  4. II ОБЩИЕ НАЧАЛА ПУБЛИЧНО-ПРАВОВОГО ПОРЯДКА
  5. II. 4.4. Некоторые рекомендации по формулировке и решению задач ЦЛП
  6. II. САКРАЛЬНАЯ ГЕОМЕТРИЯ: МЕТАФОРА УНИВЕРСАЛЬНОГО ПОРЯДКА
  7. IV.1. Общие начала частной правозащиты и судебного порядка
  8. MathCad: способы решения системы уравнений.
  9. MatLab: решение дифференциальных уравнений
  10. V2: ДЕ 53 - Способы решения обыкновенных дифференциальных уравнений первого порядка
  11. V2: ДЕ 54 - Дифференциальные уравнения, допускающие понижение порядка
  12. V2: ДЕ 55 - Решение линейных неоднородных уравнений со специальной правой частью

 

В задачах геометрии, в которых требуется найти уравнение кривой по заданному свойству ее касательной, нормали или площади криволинейной трапеции, используется геометрическое истолкование производной (угловой коэффициент касательной) и следующие общие формулы для определения длин отрезков касательной t, нормали n, подкасательной St и поднормали Sn:

При решении таких задач с помощью дифференциальных уравнений рекомендуется следующая последовательность действий:

1. выполнить чертеж и ввести обозначения;

2. отделить условия, имеющие место в произвольной точке искомой линии, от условий, выполняющихся лишь в отдельных точках (начальных условиях);

3. выразить все упомянутые в задаче величины через координаты произвольной точки и через значения производной;

4. по условию задачи составить дифференциальное уравнение, для которого искомая кривая является интегральной кривой.

Задача№9. Найти линию, проходящую через точку M0 и обладающую тем свойством, что в любой ее точке M касательный вектор с концом на оси OY имеет проекцию на ось OY, равную a.

M0(e,0), a=1.

Решение.Ищем функцию y=y(x). Воспользуемся геометрическим свойством производной: y/ представляет угловой коэффициент касательной к графику этой функции (с положительным направлением оси OX), т.е. . Найдем

.

С другой стороны (из треугольника AMN):

.

Тогда

.

Решая это уравнение, найдем, что

.

Подставим M0(e;0) и a=1: 0=-1+c, отсюда c=1. Тогда линия, проходящая через точку M0 удовлетворяющая условиям нашей задачи, будет иметь вид

.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)