И ее следствия
Для разрешимости задачи математического программирования (как и в любой оптимизационной задачи) необходимо, чтобы множество допустимых решений было не пусто, и целевая функция на этом множестве была ограничена сверху (если задача на максимум), либо снизу (если задача на минимум).
Теорема двойственности. Каковы бы ни были исходные данные, для задач 1 и 1* имеет место один из следующих взаимоисключающих случаев.
1. В задачах 1 и 1* имеются оптимальные векторы х и у и , т.е. обе задачи разрешимы.
2. В задаче 1 существуют допустимые векторы х из некоторого множества Х, но линейная функция на множестве этих векторов не ограничена сверху, т.е. , тогда в задаче 1* нет допустимых векторов.
3. В задаче 1* существуют допустимые векторы , но функция не ограничена снизу на множестве этих векторов, т.е. , тогда в задаче 1 нет допустимых векторов.
4. В задачах 1 и 1* нет допустимых векторов, то есть 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | Поиск по сайту:
|