АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

И ее следствия

Читайте также:
  1. Flх.1 Употребление с вредными последствиями
  2. V3: Перестройка социально-политической жизни государства и ее последствия.
  3. Автокорреляция случайного возмущения. Причины. Последствия.
  4. Антропогенное воздействие на атмосферу. Источники и последствия загрязнений.
  5. Антропогенное воздействие на гидросферу. Источники и последствия загрязнений.
  6. Антропогенное воздействие на литосферу. Источники и последствия загрязнений.
  7. Априорные (предвестники) и апостериорные (последствия) признаки опасности.
  8. Балла). На каком из графиков показаны краткосрочные последствия неблагоприятного шока предложения, связанного с ростом цен на нефть?
  9. Безработица : понятие, типы, социально-экономические последствия
  10. Безработица и её формы. Социально-экономические последствия безработицы
  11. Безработица, ее виды и социально-экономические последствия. Государственная политика занятости населения
  12. Безработица, ее формы и последствия

Для разрешимости задачи математического программирования (как и в любой оптимизационной задачи) необходимо, чтобы множество допустимых решений было не пусто, и целевая функция на этом множестве была ограничена сверху (если задача на максимум), либо снизу (если задача на минимум).

Теорема двойственности. Каковы бы ни были исходные данные, для задач 1 и 1* имеет место один из следующих взаимоисключающих случаев.

1. В задачах 1 и 1* имеются оптимальные векторы х и у и , т.е. обе задачи разрешимы.

2. В задаче 1 существуют допустимые векторы х из некоторого множества Х, но линейная функция на множестве этих векторов не ограничена сверху, т.е. , тогда в задаче 1* нет допустимых векторов.

3. В задаче 1* существуют допустимые векторы , но функция не ограничена снизу на множестве этих векторов, т.е. , тогда в задаче 1 нет допустимых векторов.

4. В задачах 1 и 1* нет допустимых векторов, то есть


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)