Метод последовательного улучшения допустимого вектора (МПУ)
II. Проверка двойственной допустимости ДБМ К. Для найденного вектора у (К) вычисляются величины и проверяются неравенства , .
1. Находим величины
При этом возможны два случая:
а) . Это означает, что базисное множество К является одновременно допустимым и двойственно допустимым базисным множеством. Тогда (потеореме: если базисное множество К является одновременно допустимым и двойственно допустимым базисным множеством, то отвечающие ему векторы и оптимальные соответственно в задачах А и А*) векторы х (К) и у (К) оптимальны для соответствующих задач и . На этом процесс заканчивается с выдачей искомых оптимальных векторов.
б) условие а) нарушается, т.е. К не является двойственно допустимым и вектор не допустимый в задаче А*. Надо найти и перейти к выполнению следующей процедуры. 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | Поиск по сайту:
|