|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Итерация 3. Таким образом, исключается интервал (105; 116,25)а =93,75 b =116,25, хт=105, L = 116,25—93,75=22,5, x 1=99,375, х 2 = 110,625, f(x 1 ) =0,39< f (105)=25. Таким образом, исключается интервал (105; 116,25). Новый интервал неопределенности равен (93,75; 105), его средняя точка есть 99,375 (точка х 1на итерации 3). Отметим, что за три итерации (шесть вычислений значения функции) исходный интервал поиска длины 90 уменьшился до величины (90)(1/2)3=11,25. Поиск с помощью метода золотого сечения. Из проведенного выше обсуждения методов исключения интервалов и минимаксных стратегий поиска можно сделать следующие выводы. 1. Если количество пробных точек принимается равным двум, то их следует размещать на одинаковых расстояниях от середины интервала.
2. В соответствии с общей минимаксной стратегией пробные точки должны размещаться в интервале по симметричной схеме таким образом, чтобы отношение длины исключаемого подынтервала к величине интервала поиска оставалось постоянным. 3. На каждой итерации процедуры поиска должно вычисляться только одно значение функции в получаемой точке. Руководствуясь этими выводами, рассмотрим симметричное расположение двух пробных точек на исходном интервале единичной длины, которое показано на рис. 2.11. (Выбор единичного интервала обусловлен соображениями удобства.) Пробные точки отстоят от граничных точек интервала на расстоянии t. При таком симметричном расположении точек длина остающегося после исключения интервала всегда равна t независимо от того, какое из значений функции в пробных точках оказывается меньшим. Предположим, что исключается правый подынтервал. На рис. 2.12 показано, что оставшийся подынтервал длины t содержит одну пробную точку, расположенную на расстоянии (1—t) от левой граничной точки. Для того чтобы симметрия поискового образца сохранялась, расстояние (1-t) должно составлять t-ю часть длины интервала (которая равна t). При таком выборе t следующая подобная точка размещается на расстоянии, равной t-й части длины интервала, от правой граничной точки интервала (рис.2.13) Рис. 2.12. Интервалы, полученные методом золотого сечения
Отсюда следует, что при выборе t в соответствии с условием 1-t =t2 симметрия поискового образца, показанного на рис. 2.11, сохраняется при переходе к уменьшенному интервалу, который изображен на рис. 2.13. Решая это квадратное уравнение, получаем откуда положительное решение t=0,61803…. Схема поиска, при которой пробные точки делят интервал в этом отношении, известна под названием поиска с помощью метода золотого сечения. Заметим, что после первых двух вычислений значений функции каждое последующее вычисление позволяет исключить подынтервал, величина которого составляет (1—t)-ю долю от длины интервала поиска. Следовательно, если исходный интервал имеет единичную длину, то величина интервала, полученного в результате N вычислений значений функции, равна tN-1. Можно показать, что поиск с помощью метода золотого сечения является асимптотически наиболее эффективным способом реализации минимаксной стратегии поиска.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |