АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Доказательство. Утверждение теоремы нетрудно доказать с помощью разложения в ряд Тейлора, представленного равенством (2.1)

Читайте также:
  1. Абсолютное доказательство
  2. Арбитражное доказательство модели Модильяни—Миллера
  3. Виды кривых безразличия, их свойства (с доказательством) и виды.
  4. Глава 4. Социальное доказательство.
  5. ДОКАЗАТЕЛЬСТВО
  6. Доказательство
  7. Доказательство
  8. Доказательство
  9. Доказательство
  10. Доказательство
  11. Доказательство
  12. ДОКАЗАТЕЛЬСТВО

Утверждение теоремы нетрудно доказать с помощью разложения в ряд Тейлора, представленного равенством (2.1). Поскольку поря­док первой отличной от нуля производной равен п, формулу (2.1) можно переписать в следующем виде:

Если п — нечетное число, то правая часть (2.6) может принимать как положительные, так и отрицательные значения в зависимости от того, является ли величина e положительной или отрицательной. Это означает, что в зависимости от знака e разность f(x*+ e ) - f (x *) либо положительная, либо отрицательная. Следовательно, функция не достигает в точке х* своего минимального или максимального значения, т. е. х* — точка перегиба.

Далее рассмотрим случай, когда п — четное число. При этом ве­личина en всегда положительная, а знак правой части (2.6) опреде­ляется первым слагаемым, если e— достаточно малая величина. Таким образом, если величина (dnf /dxn) ï x=x* положительная, то f(x*+ e )- f (х *)>0 и точка х* соответствует локальному минимуму. Аналогичные рассуждения нетрудно провести также и для локаль­ного максимума.

Для того чтобы применить теорему 2.2 к функции f(x)=x 3, гра­фик которой изображен на рис. 2.8, вычислим

Так как порядок первой отличной от нуля производной равен 3 (нечетное число), точка х= 0является точкой перегиба.

Замечание

Выше предполагалось, что рассматриваемая функция диффе­ренцируема или что ее первая производная существует и непрерыв­на. Однако если функция не является дифференцируемой во всех точках области определения, то даже необходимое условие наличия оптимума, позволяющее идентифицировать стационарные точки, может не выполняться в точке оптимума. Например, рассмотрим кусочно-линейную функцию

Эта функция непрерывна во всех точках действительной оси, но не­дифференцируема при х= 2. Функция достигает максимума в точке х= 2, которая не является стационарной в соответствии с данным выше определением.

Пример 2.1

Рассмотрим функцию

определенную на всей действительной оси. Первая производная этой функции равна

df /dx =30 х 5 + 180 х 4+ 330 х 3— 180 х 2 = 30 х 2 (х— 1 ) (х— 2 ) (х— 3 ).

Ясно, что первая производная обращается в нуль в точках х = 0, 1, 2, 3, и, следовательно, эти точки можно классифицировать как стационарные. Вторая производная функции равна

Вычислив значения второй производной в четырех точках х = 0, 1, 2, 3, получим

 

x f(x) d 2 f /dx 2
     
  27,5  
    -120
  5,5  

 

Отсюда следует вывод, что х= 1, 3 — точки локальных минимумов, а х= 2— точка локального максимума. Чтобы идентифицировать точку х= 0, вычислим третью производную

Так как эта производная отлична от нуля и имеет нечетный порядок, то точка х= 0является не точкой оптимума, а точкой перегиба.

Следующий вопрос, к рассмотрению которого мы переходим, связан с определением глобального максимума или минимума функ­ции одной переменной. Поскольку глобальный оптимум является локальным, можно вычислить все локальные оптимумы и выбрать из них наилучший. Алгоритм, основанный на этом простейшем подходе, приводится ниже.

Максимизировать f(x) при ограничении а ≤ x ≤ b,

где а и b — установленные границы изменения значений перемен­ной х.

Так как функция исследуется на заданном интервале, нетрудно заметить, что проверку наличия локального оптимума необходимо проводить не только в стационарных точках, но и в граничных точках интервала.

Шаг 1. Приравнять df/dx= 0и найти все стационарные точки.

Шаг 2. Выбрать все стационарные точки, которые располо­жены в интервале [ а, b ]. Обозначим эти точки через x 1, х 2,..., х N .

Проверку наличия локального оптимума следует проводить только на множестве указанных точек, дополненном точками а и b.

Шаг 3. Найти наибольшее значение f(x) из множества f(а), f(b), f(x 1 ),..., f(x N ). Это значение соответствует глобальному максимуму.

Примечание. При построении алгоритма мы не пытались клас­сифицировать стационарные точки как точки локального минимума, точки локального максимума или точки перегиба, поскольку для этого требуется вычисление производных высших порядков. Для определения глобального оптимума легче вычислить соответствую­щие значения функции и выбрать из них максимальное.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.)